
BQCD Manual

T.R. Haar, Y. Nakamura and H. Stüben

June 2017

Authors

Taylor Ryan Haar
CSSM, Department of Physics
The University of Adelaide
Adelaide, SA
Australia 5005

<taylor.haar@adelaide.edu.au>

Yoshifumi Nakamura
RIKEN Advanced Institute for Computational Science
Kobe, Hyogo 650-0047
Japan

<nakamura@riken.jp>

Hinnerk Stüben
Universität Hamburg
Regionales Rechenzentrum
20146 Hamburg
Germany

<hinnerk.stueben@uni-hamburg.de>

Copyright c© 2017 Taylor Ryan Haar, Yoshifumi Nakamura, Hinnerk Stüben

$Id: svn_id.tex 989 2017-06-20 07:19:40Z rzxa001 $

2

Contents

Contents

Preface 7

1. Overview 8
1.1. Summary of changes . 9

2. Installation 10
2.1. Prerequisites . 10

2.1.1. lime . 10
2.1.2. LAPACK and ScaLAPACK . 10

2.2. Download . 11
2.3. License . 11
2.4. Configuration . 11

2.4.1. Supported platforms . 11
2.4.2. Settings in Makefile.var . 12
2.4.3. Configuring/porting SIMD . 12

2.5. Testing . 12

3. Usage 14
3.1. Quickstart guide . 14

3.1.1. Basics . 14
3.1.2. Gauge and fermion fields . 14
3.1.3. Molecular dynamics . 15
3.1.4. Markov Chain . 16
3.1.5. Fermion matrix inversion . 16
3.1.6. Running BQCD . 17
3.1.7. BQCD output . 17

3.2. Command line . 19
3.2.1. Flag -c (continuation job) . 19
3.2.2. Flag --convert-to-ildg . 19
3.2.3. Flag -I (print default input values) 19
3.2.4. Flag -V (print program version) 19
3.2.5. Argument input . 20
3.2.6. Argument output . 20

3.3. Input parameters and the syntax of input file 20
3.3.1. General parameters . 20
3.3.2. Lattice and domain decomposition 21
3.3.3. Gauge action . 22
3.3.4. Fermion action . 22
3.3.5. Double-flavour pseudofermions . 24
3.3.6. Single-flavour pseudofermions . 25
3.3.7. RHMC tuning parameters . 26

3

Contents

3.3.8. Zolotarev rational approximation 26
3.3.9. QED . 27
3.3.10. Axion . 27
3.3.11. PFHMC . 28
3.3.12. Truncated rational HMC (tRHMC) 30
3.3.13. Start parameters . 30
3.3.14. Configuration I/O . 31
3.3.15. Markov Chain . 33
3.3.16. Hybrid Monte Carlo . 34
3.3.17. Integrator specification . 34
3.3.18. Time scale specifiers . 36
3.3.19. Solver parameters . 37
3.3.20. Measurements . 39
3.3.21. Compute performance tuning . 42
3.3.22. Miscellaneous . 44

3.4. File naming conventions . 44
3.4.1. input, output and batch log files 45
3.4.2. Restart files in bqcd format . 45
3.4.3. Restart files in bqcd2 format . 45
3.4.4. Restart files in lime format . 45
3.4.5. Configuration files in bqcd format 45
3.4.6. Configuration files in bqcd2 format 46
3.4.7. Configuration files in ildg format 46

3.5. Flexible filenames . 46
3.6. Working with data in ILDG format . 46

3.6.1. Restart files . 47
3.6.2. SU(3) configuration files and metadata 47
3.6.3. Precision . 49
3.6.4. Example of a complete set of ildg settings 49

3.7. Output – structure of res(ults) file . 49
3.7.1. Header section . 51
3.7.2. ILDG read and write sections . 51
3.7.3. Monte-Carlo sections (ForceAcceptance, MC, HMCtest) 51
3.7.4. Cooling section . 52
3.7.5. Footer section . 52
3.7.6. Timing sections . 52
3.7.7. List of embedded tables . 53

3.8. Measurements . 53
3.8.1. Topological charge . 53
3.8.2. Polyakov loop . 54
3.8.3. Fermionic bulk quantities . 54
3.8.4. Determinants for phase reweighting at non-zero chemical potential 55
3.8.5. fA and fP . 56
3.8.6. Wilson flow for QCD field . 56

4

Contents

3.8.7. Wilson flow for QED field . 57

4. Physics 58
4.1. Gauge actions . 58
4.2. Fermionic actions . 58
4.3. Schrödinger functional boundary conditions 60
4.4. QCD+QED . 60
4.5. Axion . 61
4.6. Observables . 62

4.6.1. Gluonic observables . 62
4.6.2. Fermionic observables . 62

5. Algorithms 63
5.1. Multi timescale integration . 63
5.2. Tuning the rational fraction part . 64
5.3. Polynomial filtering . 65

5.3.1. Double-flavour case . 65
5.3.2. Single-flavour case . 66

5.4. The generalized multi-scale integration scheme 66
5.5. Truncated RHMC (tRHMC) . 67
5.6. The Zolotarev optimal rational approximation 68

6. Implementation issues 69
6.1. Programming language . 69
6.2. Preprocessing . 69

6.2.1. C preprocessor . 69
6.2.2. m4 macro preprocessor . 70
6.2.3. loopp loop preprocessor . 70

6.3. Fortran modules . 71
6.4. Precision . 71
6.5. Parallelisation . 72
6.6. Random numbers . 72
6.7. Saving and reading configurations . 73

6.7.1. I/O format bqcd . 73
6.7.2. I/O format bqcd2 . 73
6.7.3. I/O format ildg . 73

6.8. Performance measurements and profiling 74
6.9. Fermionic boundary conditions . 74
6.10. C interface . 74
6.11. Input parsing . 74

7. Compute performance tuning 75
7.1. Conjugate gradient solvers and SIMD vectorization 75
7.2. Hopping matrix multiplication . 75

5

Contents

7.3. Array layout . 76
7.3.1. Spin-colour arrays . 77
7.3.2. Clover arrays . 77
7.3.3. Array layout for SIMD vectorization 77

7.4. MPI communication . 78
7.4.1. Overlapping communications . 78
7.4.2. Overlapping communication and computation 78

7.5. Parallel random numbers . 79
7.6. I/O . 79
7.7. Miscellaneous . 79

A. γ-matrix definitions 80

B. Preprocessor flags – MYFLAGS 81
B.1. Flags set in Makefile.var . 81
B.2. Flags set in Makefile.in . 82

C. Process mapping 83

D. SIMD vectorization 84

E. Loop blocking 86

6

Preface

Preface

BQCD is a Hybrid Monte-Carlo program for simulating lattice QCD with dynamical
Wilson fermions. The development of BQCD was started in 1998 by H.S. for the two
flavour case and the original Wilson action. It was written for a study of parallel tem-
pering [3, 4]. At that time the whole parallelization framework was completed.

Two years later the program was extended in two directions. The first direction was the
implementation of cloverO(a) improvement of the fermionic action. With the availability
of clover improvement, BQCD became one of the main production codes of the QCDSF
collaboration [5]. The second direction was the addition of an external field to the
standard Wilson action in order to study the Aoki phase [18, 19]. The next milestone
was the implementation of the Hasenbusch trick [6, 7].

Since 2006, the code was mainly developed by Y.N. He largely extended and improved
the code to enable simulations including a third fermion flavour [8, 9, 10, 11], the hopping
term with chemical potential [12], a CPT breaking term [13], measurement routines for
rectangular plaquettes, Wilson flow, quark determinant, eigenvalues of the Dirac matrix
as well as meson and baryon propagators, and state-of-the art solvers.

In 2013 QED was added by Y.N. and H.S. [14]. Portable SIMD vectorization was
implemented by H.S. in 2015. In 2017, T.H. added polynomial filtering [15, 16] and
improved the manual, while Y.N. added the axion [17].

The program has been used by several groups, e.g. the group of M. Mller-Preussker
[18, 19], the DIK Collaboration [20, 21], QPACE [22], RQCD [23], Japanese finite density
[12] and finite temperature [24] projects, as well as CSSM [25].

BQCD became free software under the GNU General Public License with its presentation
at Lattice 2010 [1]. We hope that it will be useful for others and kindly ask users to cite
our contribution to the proceedings of Lattice 2017 [2] if the code is used to prepare a
publication.

June 2017 Taylor Ryan Haar
Yoshifumi Nakamura

Hinnerk Stüben

7

1. Overview

1. Overview

BQCD is a Hybrid Monte Carlo program for generating configurations with a clover
type action.

Implemented actions for dynamical simulations:

• Tree-level improved gauge actions

• Up to 6 distinct double-flavour pseudofermions and 6 single-flavour pseudofermions

• The clover action

• Stout link smearing

• Parity-flavour breaking

• Chemical potential

• CPT breaking

• QCD+QED

• The axion

Implemented algorithms for improving performance:

• RHMC algorithm

• Multi timescale integration, both nested and generalized

• Mass preconditioning

• Polynomial filtering

• Truncated RHMC

• Minimal norm integrators (Omelyan)

• Conjugate gradient with SIMD vectorization

After compiling the program (section 2), follow the quick start guide in section 3.1 to
start using BQCD. The rest of section 3 explains how to use BQCD, which includes
documentation on most of the input keywords (section 3.3). The following section 4 and
section 5 explain the concepts. Then, section 6 explains how the code is implemented,
and section 7 gives various ways to tune the program.

8

1. Overview

1.1. Summary of changes

• version : 5.1.0 (June 2017)

– simulation of QCD+axion

– simulation of QCD+QED

– implementation of the conjugate gradient solver with SIMD intrinsics

– polynomial filtering and truncated RHMC

– the generalized integration scheme (see section 5.4)

• version : 4.1.0 (October 2011)

– GCRO-DR solver

– replay trick

– Schrödinger functional method to determine cSW

– further RHMC tuning (see section 5.2)

– SSE implementation of the hopping and clover matrix multiplications (set
libd = 103 in Makefile.var)

– Check return value of functions for reading/writing ILDG format

– Minor changes for printing and function interface

• version : 4.0.0 (June 2010)

– first public version

9

2. Installation

2. Installation

2.1. Prerequisites

The default directory for finding prerequisite packages is

$HOME/opt/package

but this can be changed in the file Makefile.in. It is recommended to use the same
compiler for building packages and BQCD.

2.1.1. lime

The lime library is needed for storing configurations in the ILDG format (International
Lattice Data Grid, see: http://plone.jldg.org/wiki). It can be downloaded from:

http://usqcd.jlab.org/usqcd-software/c-lime/lime-1.3.2.tar.gz

Installation:

cd ~/opt

tar zxvf lime-1.3.2.tar.gz

cd lime-1.3.2

export CC=non-default-compiler # optional

export CFLAGS=non-default-compiler-flags # optional

./configure --prefix=$PWD

make

2.1.2. LAPACK and ScaLAPACK

LAPACK (Linear Algebra Package) and ScaLAPACK (Scalable LAPACK) are needed
to get the full functionality. The code will compile without but will complain at runtime
if they are needed but not provided. The original code can be downloaded from

http://www.netlib.org

but typically both libraries are installed on HPC systems. If an independent installation
is used, LAPACK and SCALAPACK have to be defined in Makefile.var:

LAPACK = -L$(HOME)/opt/lapack -llapack -lrefblas -ltmglib

SCALAPACK = $(HOME)/opt/scalapack/libscalapack.a

Definitions for pre-installed libraries can be found in:

platform/Makefile-platform.var

10

2. Installation

2.2. Download

The source code of BQCD and this manual can be downloaded from:

https://www.rrz.uni-hamburg.de/bqcd

2.3. License

BQCD is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

BQCD is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more de-
tails.

You should have received a copy of the GNU General Public License along with BQCD.
If not, see <http://www.gnu.org/licenses/>.

2.4. Configuration

2.4.1. Supported platforms

Platform dependent parts are kept in Makefile.var which is a symbolic link to a file in
the platform directory

Makefile.var -> platform/Makefile-platform.var

for example:

Makefile.var -> platform/Makefile-gnu.var

One can prepare working on a particular platform by entering the command

make prep-platform

which creates the symbolic link, for example:

make prep-gnu

In the platform directory one can find files for machines that were used in the past but
that are not necessarily up-to-date. Currently you can expect that compilation works
in these cases:

11

2. Installation

gnu GNU compiler, Open-MPI/MPICH
hlrn3 Cray XC40 (Intel compiler, Cray MPI)
intel Intel compiler, Intel MPI
juqueen IBM BlueGene/Q at JSC Jülich

2.4.2. Settings in Makefile.var

In Makefile.var one can make the following high level settings:

timing = empty or 1 switch on profiling
mpi = empty or 1 single processor program or MPI
omp = empty or 1 compile with OpenMP
debug = empty or 1 compile with debug flags
libd = 100 which hopping matrix multiplication
random = ranlux-3.2 which random number generator

Based on these high level settings, several low level settings are made. This includes
compiler flags, preprocessor flags and which libraries are used. For more information,
see platform/Makefile-EXPLAINED.var.

The make procedure is not always straightforward. Instead of make,

make fast

just builds the binary bqcd5.

2.4.3. Configuring/porting SIMD

Configuring/porting SIMD is described in cg/README.

2.5. Testing

Reference test runs can be found in the data/ directory. For each case there is an input
and reference output file:

bqcd.NNN.input

bqcd.NNN.output

The test cases are described in comments:

grep comment *.input

A test run looks like this:

12

2. Installation

cd data

../bqcd5 bqcd.NNN.input bqcd.NNN.res

diff bqcd.NNN.output bqcd.NNN.res

Due to rounding differences the output will not be identical to the reference output but
should be very close to the reference output.

In order to test a parallel run

• set the number of processes to be used for each lattice dimension in the input file,
for example

processes 1 1 2 4

decomposes the z- into 2 domains and the t-direction into 4 domains,

• run BQCD on the appropriate number on processes (8 in the above example):

mpirun -np 8 ../bqcd5 bqcd.NNN.output bqcd.NNN.res

In principle the output (bqcd.NNN.res) is identical to the output from the sequen-
tial run (again up to rounding differences). This holds true for any decomposition.

13

3. Usage

3. Usage

3.1. Quickstart guide

To get started with BQCD, take a look the example input file bqcd.300.input, located
in the data/ directory. The input file is formatted as a series of ‘keyword value’ pairs,
with the # character being used for comments.

3.1.1. Basics

Let’s look at the first few keywords in this file:

comment "Test for Nf=2+1"

run 300

lattice 4 4 4 4

processes 1 1 1 1

The comment is just that, and the run number is an identifier for this file’s particular
configuration.

The next few keywords describe how the lattice is set up. The keyword lattice sets
up a 43 × 4 lattice, with the extents given the usual xyzt order. processes describes
how the lattice is split between processes along each dimension, with the total number
of processes equal to the product. In this case, there is just one process.

3.1.2. Gauge and fermion fields

Next are some keywords describing the fields on the lattice:

gauge_action TREE

beta 5.5

fermi_action SLRC

csw 2.65

n_stout 1

alpha 0.1

These give a tree-level improved gauge action with β = 5.5 and a Clover fermion action
with cSW = 2.65 and stout links on the Wilson part of the fermion action with 1 sweep
and α = 0.1. Refer to gauge action and fermi action for information on other choices
of actions.

The keywords starting with nf determine which pseudofermions we have on this lattice:

14

3. Usage

nf2_kappa1 0.121095

nf2_kappa1h1 0.1203

hmc_hkappa 1

nf1_kappa1 0.120512

nf1_kappa1npf 2

nf1_kappa1nth 4

This is a Nf=2+1 run with two kinds of pseudofermions:

• nf2 kappa1 produces a double-flavour pseudofermion with hopping parameter κ =
0.121095, which has a Hasenbusch filter given by nf2 kappa1h1 at κ′ = 0.1203.
hmc hkappa toggles which form of Hasenbusch is used (κ′ or κ+ ρ).

• nf1 kappa1 produces a single-flavour pseudofermion with κ = 0.120512 via RHMC,
which is constructed via two pseudofermions (nf1 kappa1npf) with a rational ap-
proximation R(M †M) ≈ (M †M)−1/4 (nf1 kappa1nth).

3.1.3. Molecular dynamics

Now for some information about how the molecular dynamics part of HMC is integrated:

hmc_trajectory_length 1.0

hmc_integrator1 2MNSTS

hmc_integrator2 2MNSTS

hmc_integrator3 2MNSTS

hmc_integrator4 2MNSTS

hmc_steps 5

hmc_m_scale 2

hmc_m_scale2 2

hmc_m_scale3 2

hmc_dsf_k11 2

hmc_dsf_k12 3

hmc_dsfr_k1 1

hmc_dsd 2

hmc_dsig 3

hmc_dsg 4

The trajectory length is τ = 1, with a total of 4 different integration time-scales with
the second order minimal norm integrator 2MNSTS on each scale; see hmc integrator

for other options. There are 5 integration steps on scale number 1 hmc steps, two steps
nested within this for scale number 2 hmc m scale, then nested with two steps again for

15

3. Usage

scales 3 then 4. Instead of nested integrators, one can use generalized integrators where
each time-scale’s integration scheme is independent: see section 5.4 for more information.

The time-scale numberings are referenced by the time scale specifiers which follow. The
setup of this file leads to the following distribution of action terms on each time scale:

1. The single-fermion pseudofermion term (hmc dsfr k1)

2. The heavier Hasenbusch term (hmc dsf k11) and the Clover determinant (hmc dsd)

3. The Hasenbusch correction term (hmc dsf k12) and the improved part of the gluon
action (hmc dsig)

4. The plaquette/Wilson part of the gluon action (hmc dsg)

3.1.4. Markov Chain

Next are some parameters setting up the Markov chain

hmc_accept_first 10

start_configuration hot

start_random 319503

mc_steps 10

mc_total_steps 20000

mc_save_frequency 0

This causes a hot start for the gauge field (start configuration) with random seed
’319503’ (start random). 10 trajectories are calculated during each run of the code
(mc steps) with the first 10 undergoing forced acceptance (hmc accept first). No
configurations are saved to file (mc save frequency), and the code stops after 20,000
trajectories (mc total steps). The default for mc_total_steps is low, and should
usually be set.

3.1.5. Fermion matrix inversion

Solver parameters:

solver_rest 1e-11

solver_rest_md 1e-9

solver_rest_cg_ritz 1e-11

solver_maxiter 1200

...

solver_outer_solver cg

...

16

3. Usage

The matrix inverter used is CG, which is set by solver outer solver. The tolerance of
this solver on fermion action evaluation is 1e-11 (solver rest), whereas it is slightly less
precise at 1e-9 during the molecular dynamics trajectories (solver rest md). Eigenval-
ues of the matrix are evaluated at the higher precision though (solver rest cg ritz).

The maximum number of iterations is 1200 (solver maxiter). This parameter has a
default value of 100, and hence should be set explicitly.

See the input keyword documentation for information on the other solver keywords in
section 3.3.19.

3.1.6. Running BQCD

Now to actually run BQCD! Copy bqcd.300.input to a working directory, change to
that directory, then run the command

bqcd bqcd.300.input bqcd.300.output &> bqcd.300.1.log

where bqcd is a full path to the BQCD executable. This will take about 10 minutes to
complete, and it produces the output file bqcd.300.output. Note that this command
also redirects the standard output and error to bqcd.300.1.log — normally, this code
would be run on a supercomputer, and these output streams would consequently go to
their own files automatically.

The code also produces a LIME file bqcd.300.lime, which contains the gauge field
configuration at the end of the run in ILDG format along with metadata for restarting
the Markov chain. We can proceed to resume the Markov chain by running the code
again with the -c flag. But first, we can speed things up by running the code in parallel:
change the line with keyword processes to

processes 1 1 2 2

and now run the code over 4 processes

mpirun -np 4 bqcd -c bqcd.300.input bqcd.300.output &> bqcd.300.2.log

This will produce 10 more trajectories.

3.1.7. BQCD output

The output file generated by BQCD, bqcd.300.output, is broken down into sections by
>Begin/>End delimiters. The output for each run is surrounded by >BeginJob/>EndJob

tokens for ease of access.

The header section >BeginHeader/>EndHeader for each run contains information about
when the job was started, and some of the input parameters.

17

3. Usage

The main part of the output file contains a series of embedded tables. These tables
contain special tokens of the form T%XX and %XX such that we can use grep to extract
them.

We can extract general information about the Markov Chain progress by running

grep ’%mc’ bqcd.300.output

This will give information about the plaquette, acceptance rate and iterations counts for
each trajectory:

T%mc traj e f PlaqEnergy exp(-Delta_H) Acc CGcalls CGitTot CGitMax CGMcalls CGMitTot CGMitMax Plaquette

%mc 1 1 1 0.4603695377 0.9406814248 1 53 2422 61 0 0 0 0.539630462296880

%mc 2 1 1 0.4597443535 0.9182754364 1 53 2290 55 0 0 0 0.540255646459386

%mc 3 1 1 0.4608069194 1.0295291357 1 53 2308 57 0 0 0 0.539193080649400

%mc 4 1 1 0.4591734179 1.0057202626 1 53 2206 55 0 0 0 0.540826582090360

%mc 5 1 1 0.4744552445 0.9244531373 1 53 1985 51 0 0 0 0.525544755494560

%mc 6 1 1 0.4717006653 0.9892924489 1 53 2011 47 0 0 0 0.528299334696576

%mc 7 1 1 0.4612058658 0.9370571005 1 53 2039 52 0 0 0 0.538794134178326

%mc 8 1 1 0.4527961003 0.9920165839 1 53 1989 50 0 0 0 0.547203899705222

%mc 9 1 1 0.4516703478 0.9742350535 1 53 2064 49 0 0 0 0.548329652150200

%mc 10 1 1 0.4544061729 0.9963916062 1 53 2105 51 0 0 0 0.545593827098611

T%mc traj e f PlaqEnergy exp(-Delta_H) Acc CGcalls CGitTot CGitMax CGMcalls CGMitTot CGMitMax Plaquette

%mc 11 1 1 0.4609078806 1.0152287442 1 53 2067 52 0 0 0 0.539092119360002

%mc 12 1 1 0.4563820740 0.9691243600 1 53 2114 49 0 0 0 0.543617925997414

%mc 13 1 1 0.4684701708 0.9935836158 1 53 2039 53 0 0 0 0.531529829236492

%mc 14 1 1 0.4651568757 1.0140884160 1 53 2019 49 0 0 0 0.534843124331008

%mc 15 1 1 0.4502802111 0.9663791611 1 53 2021 50 0 0 0 0.549719788863034

%mc 16 1 1 0.4505187147 1.0078377885 1 53 1995 49 0 0 0 0.549481285258094

%mc 17 1 1 0.4468129429 0.9965722228 1 53 2023 50 0 0 0 0.553187057109728

%mc 18 1 1 0.4473054753 0.9839808214 1 53 2033 50 0 0 0 0.552694524687057

%mc 19 1 1 0.4452533591 1.0368457399 1 53 2116 50 0 0 0 0.554746640879882

%mc 20 1 1 0.4518358652 0.9818649052 1 53 2175 54 0 0 0 0.548164134753665

%mc 21 1 1 0.4637735116 0.9187633143 1 53 2126 53 0 0 0 0.536226488442716

%mc 22 1 1 0.4719595030 0.9990389368 1 53 2123 50 0 0 0 0.528040497005646

%mc 23 1 1 0.4711059887 1.0049051498 1 53 2262 53 0 0 0 0.528894011297565

%mc 24 1 1 0.4630871801 0.9687888230 1 53 2176 53 0 0 0 0.536912819873419

%mc 25 1 1 0.4773637154 0.9786564332 1 53 2228 52 0 0 0 0.522636284633002

%mc 26 1 1 0.4818968039 0.9527153539 1 53 2321 56 0 0 0 0.518103196065121

%mc 27 1 1 0.4849282090 0.9596876019 1 53 2287 57 0 0 0 0.515071791018083

%mc 28 1 1 0.4736714060 1.0016959817 1 53 2210 54 0 0 0 0.526328593955653

%mc 29 1 1 0.4736714060 0.9708984380 0 53 2235 54 0 0 0 0.526328593955653

%mc 30 1 1 0.4662033473 0.9745797939 1 53 2074 52 0 0 0 0.533796652740701

For the first 10 trajectories which were force-accepted, this data is contained in the table
marked %fa instead.

We can also look at an iteration count breakdown in the table %it, and the average
%Favg and maximal %Fmax forces. A comprehensive list of the embedded tables can be
found in section 3.7.7.

A footer section >BeginFooter/>EndFooter for each run has the completion time of the
job and the total CPU-Time.

At the end of each run is a timing section >BeginTiming/>EndTiming, which contains
runtime statistics on many different operations within the code.

18

3. Usage

3.2. Command line

BQCD takes the following arguments:

bqcd [-c] input [output]

bqcd --convert-to-ildg input [output]

bqcd -I

bqcd -V

3.2.1. Flag -c (continuation job)

If the -c parameter is present the start configuration is being read from file. Otherwise
a start configuration is being generated. The setup is such that input does not have to
be modified from the first to the second job in a job chain.

3.2.2. Flag --convert-to-ildg

This flag is used to convert saved configuration from BQCD formats to the ILDG format
(see section 6.7). Example:

• work with bqcd.200.input and modify io conf format (i.e. switch from ildg to
bqcd2 format)

io_conf_format "bqcd2"

• run BQCD

bqcd bqcd.200.input bqcd.200.output &> bqcd.200.3.log

• convert the gauge field configuration of trajectory 10 to ILDG format

bqcd --convert-to-ildg bqcd.200.00010.info bqcd.200.00010.output

3.2.3. Flag -I (print default input values)

If -I is given the program prints all possible input parameters with their default values
and exits. Most of them are described in section 3.3.

3.2.4. Flag -V (print program version)

The program prints version information and exits. The output looks like this:

This is bqcd 5.1 (revision 887)

input format: 5

conf info format: 4

19

3. Usage

MAX_TEMPER: 50

REAL kind: 8

Version of D: 100

Communication: MPI (sc:immediate) (g:immediate) + OpenMP

RandomNumbers: ranlux-3.2 level 2

3.2.5. Argument input

Name of input parameter file.

3.2.6. Argument output

Name of log- and results file. If not given data will be written to stdout. If the file does
not exist it will be created. If -c is set new output will be appended to the file. If -c is
not set an existing file will be overwritten.

3.3. Input parameters and the syntax of input file

The syntax of the input file is one keyword value(s) pair (or tuple) per line. Empty
lines and lines beginning with a # character are ignored. Keywords are checked for
validity but the number of values and the types of values are not. It is a good idea to
enclose character string parameters in double quotes "..." (in particular Fortran might
scramble filenames containing slashes).

The following input keyword documentation is fairly self-explanatory but some keyword
types are worth noting. An enum is a string which takes certain built-in values and
a flag is an integer which switches a feature on and off, usually with off = 0 and on
otherwise.

3.3.1. General parameters

run

Type: integer; Default: 0

An integer that specifies the run number of the job. This is stored in gener-
ated configurations, such that restarts are performed correctly. Try to give
each distinct input file a different run number.

comment

Type: string; Default: ""

A comment, which is (only) added to the header of the output. Useful to
identify what configuration of parameters you are using.

20

3. Usage

3.3.2. Lattice and domain decomposition

lattice

Type: four integers; Default: 4 4 4 4

A set of 4 integers that specifies the extent of the lattice in the usual order,
i.e. ‘L_X L_Y L_Z L_T’. Each extent must be an even number in order to
accommodate even-odd preconditioning.

processes

Type: four integers; Default: 1 1 1 1

A set of 4 integers that specifies how to split the lattice across the processors,
‘N_X N_Y N_Z N_T’. The total number of processors is given by the product.
The number of processors in each direction must evenly divide the corre-
sponding lattice extent. BQCD also requires that L_X/N_X is even, such that
it can implement even-odd preconditioning.

ddlattice

Type: four integers; Default: 1 1 1 1

Specify the domain decomposition in each direction for DD preconditioning.
No DD takes place if set to default.

The program must be compiled with the -DBQCD DDHMC macro flag for DD
preconditioning to be available.

process mapping

Type: four integers; Default: 1 2 3 4

A permutation of ‘1 2 3 4’ which specifies the order in which the process
coordinates are mapped to process ranks, see appendix C.

boundary conditions fermions

Type: four integers; Default: 1 1 1 -1

A set of 4 integers which are either ‘1’ or ‘-1’ that specify the boundary
conditions for the fermion fields in each direction. 1 is periodic, -1 is anti-
periodic.

boundary sf

Type: flag; Default: 0

A logical switch that determines whether we use Schroedinger’s boundary
conditions, see section 4.3.

21

3. Usage

3.3.3. Gauge action

Refer to section 4.1 for further explanation of gauge actions.

gauge action

Type: enum; Default: WILSON

A string that specifies which gauge action to use.

• WILSON: use the Wilson gauge action

• TREE: use the tree-level improved action

• IWASAKI: use the Iwasaki action

See section 4.1 for expressions of these actions.

beta

Type: float; Default: 0.0

Defines β, the inverse coupling of the SU(3) gauge.

hmc dsg

Type: integer; Default: 0

Specifies the time-scale on which the plaquette (Wilson) gluon action Splaq

is integrated.

hmc dsig

Type: integer; Default: 0

Specifies the time-scale on which the improved part of the gluon action Simp =
Sg − Splaq is integrated.

3.3.4. Fermion action

Refer to section 4.2 for further information on fermion actions. For κ values, see
nf2 kappa[1-6] and nf1 kappa[1-6].

fermi action

Type: enum; Default: NON

A string that specifies which fermion action to use.

• NON: no fermions; just do gluodynamics

• WILSON: use the Wilson fermion action

• CLOVER: use the O(a)-improved ’clover’ fermion action
Requires csw

• SLW: use the Wilson fermion action with stout links

22

3. Usage

Requires alpha, n stout

• SLIC: same as CLOVER, but with stout links in the clover term
Requires csw, alpha, n stout

• SLRC: same as CLOVER, but with stout links in the Wilson term
Requires csw, alpha, n stout

• SLOC: same as CLOVER, but with stout links in both terms
Requires csw, alpha, n stout

See section 4.2 for expressions of these actions.

h

Type: float; Default: 0.0

Defines h, the twisted mass parameter for explicit parity-flavour symmetry
breaking. See section 4.2 for the corresponding action term.

chemi

Type: float; Default: 0.0

Defines the real part of the chemical potential µ. See section 4.2 for an
explanation.

chemi i

Type: float; Default: 0.0

Defines the imaginary part of the chemical potential µ. See section 4.2 for
an explanation.

breaking term

Type: file; Default: ""

Specifies the path to the matrix formed file to violate CPT symmetries with
λ (nf2 lambda[1-6] and nf1 lambda[1-6]), see section 4.2.

n stout

Type: integer; Default: 0

Required for : a stout-link fermion action

Determines how many times to smear the gauge links for a stout link fermion
action. See section 4.2 for an explanation.

alpha

Type: float; Default: 0.0

Required for : a stout-link fermion action

Sets the parameter α for stout link smearing. See section 4.2 for an expla-
nation.

23

3. Usage

csw

Type: float; Default: 0.0

Required for : a clover fermion action

Defines cSW , the Symanzik improvement coefficient for clover actions.

hmc dsd

Type: integer; Default: 0

Required for : a clover fermion action

Specifies the time-scale on which the clover determinant is integrated.

3.3.5. Double-flavour pseudofermions

nf2 kappa[1-6]

Type: float; Default: 0.0

Specifies κ for up to 6 distinct double-flavour pseudofermions.

nf2 kappa[1-6]h[1-3]

Type: float; Default: 0.0

Specifies up to three Hasenbusch masses for each double-flavour pseudofermion.
These are ordered finest to coarsest, which is reverse to the usual action or-
dering: e.g. nf2_kappa1h1 is heavier than nf2_kappa1h2. See the section 5.1
for more information.

hmc hkappa

Type: flag; Default: 0

Toggles the way Hasenbusch masses are implemented from the given values
nf2 kappa[1-6]h[1-3].

• On (non-zero): given values are modified κ parameters κ′, such that
W = K(κ′)

• Off: given values are ρ shifts, such that W = K(κ) + ρ.

nf2 lambda[1-6]

Type: float; Default: 0.0

Specifies λ for up to 6 distinct double-flavour pseudofermions to violate CPT
symmetries with breaking term, see section 4.2.

hmc dsf k[1-6][1-4]

Type: integer; Default: 0

Specifies the time-scale on which the jth mass-preconditioned term for the

24

3. Usage

ith two-flavour fermion is integrated.

The ordering of the action terms is the reverse of the action term ordering;
see section 3.3.18 for more information.

3.3.6. Single-flavour pseudofermions

nf1 kappa[1-6]

Type: float; Default: 0.0

Specifies κ for up to 6 distinct single-flavour fermions.

nf1 kappa[1-6]npf

Type: integer; Default: 1

Specifies how many degenerate pseudo-fermions there are for each specified
single-flavour fermion.

nf1 kappa[1-6]nth

Type: integer; Default: 2

Specifies the n-th root of K = M †M to be approximated by the RHMC
rational approximation for each single-flavour fermion.

nf1 lambda[1-6]

Type: float; Default: 0.0

Specifies λ for up to 6 distinct single-flavour pseudofermions to violate CPT
symmetries with breaking term, see section 4.2.

hmc dsfr k[1-6]

Type: integer; Default: 0

Specifies the time-scale on which the RHMC term is integrated for each
single-flavour fermion. See time-scale section section 3.3.18 for more infor-
mation.

rescale rhmc

Type: flag; Default: 1

Determines (non-zero = on) whether to rescale the RHMC approximation
after each trajectory. If the ratapp has range [lmin, lmax] and the fermion
matrix has eigenvalue range [λmin, λmax], we can use

R(K) ≈ Kn = a−n(aK)n ≈ a−nR(aK) (1)

to centre the approximation’s effective range on the true eigenvalue spectrum.

25

3. Usage

Namely, R(aK) is effective on [lmin/a, lmax/a], so we choose a such that

lmax
aλmax

=
aλmin
lmin

=⇒ a =

√
lminlmax
λminλmax

Turning this off is useful when comparing methods, as it ensures that the
rational approximation does not change.

3.3.7. RHMC tuning parameters

tuning approx range

Type: flag; Default: 0

Turns on tuning of rational approximation.

tuning approx range list

Type: file; Default: ""

Specifies file to tuning rational approximation, see data/rangelist in the
source code for an example.

tuning fraction tolerance

Type: file; Default: ""

Specifies file to tuning fraction tolerances, see data/fractiontolerance in the
source code for an example.

3.3.8. Zolotarev rational approximation

For an brief explanation of the Zolotarev approximation, see section 5.6.

hmc zolo

Type: flag; Default: 0

A switch that determines whether the program uses a Zolotarev rational ap-
proximation for RHMC rather than the built-in Remez algorithm for the case
where nf1 kappa[1-6]nth=2. It only takes effect for such pseudofermions
because the Zolotarev rational approximation is an approximation to the
inverse square root.

hmc zolo n

Type: integer; Default: 0

Specifies the number of shifts n to use in the Zolotarev approximation.
If omitted, the number of shifts is calculated to produce the error delta

26

3. Usage

hmc zolo delta on the given approximation range hmc zolo [min|max].

hmc zolo delta

Type: float; Default: 1e-6

Specifies the error delta for the Zolotarev approximation, which is the max-
imum error of the approximation over the eigenvalue range specified by
hmc zolo [min|max].

If both hmc zolo delta and hmc zolo n are given, the latter takes prefer-
ence, and the code will issue a warning if the produced rational approxima-
tion has a larger error delta.

hmc zolo [min|max]

Type: integer; Default: 0

Specifies the minimum/maximum eigenvalue bound to approximate in the
Zolotarev approximation. If omitted, the eigenvalue range is taken to be
[0.8λmin, 1.2λmax], where λmin/λmax is the calculated minimum/maximum
eigenvalue for the fermion matrix M †M .

3.3.9. QED

For more information on using QED, see section 4.4.

beta qed

Type: float; Default: 0.0

Defines βQED, the inverse coupling of the electromagnetic force.

nf2 em charge[1-6] x3

Type: integer; Default: 0

Defines how many thirds of the electron charge the ith double-flavour pseud-
ofermion has.

nf1 em charge[1-6] x3

Type: integer; Default: 0

Defines how many thirds of the electron charge the ith single-flavour pseud-
ofermion has.

3.3.10. Axion

kappa axion

Type: float; Default: 0.0

27

3. Usage

Defines κa, the hopping parameter of axion. See section 4.5.

finv axion

Type: float; Default: 0.0

Defines finv, a relevant parameter of the inverse decay constant of axion. See
section 4.5.

3.3.11. PFHMC

For an explanation of polynomial filtering, including the formulation of the polynomials
used, see section 5.3.

nf2 k[1-6]p[1-3]

Type: integer; Default: 0

Specifies up to 3 polynomial filters via their order for each possible two-
flavour degenerate pseudo-fermion. They are expected to be ordered from
finest to coarsest, meaning that (for example) nf2_k1p1 > nf2_k1p2. The
given polynomial orders are passed to the Chebyshev polynomial creation
routines to create polynomials of suitable order and (µ, ν).

nf2 k[1-6] [mu|nu]

Type: float; Default: 0.0

Specifies the value of the µ/ν parameter for the Chebyshev polynomial used
in PFHMC for each double-flavour pseudofermion. Together, these two pa-
rameters specify the ellipse upon which the roots of the Chebyshev polyno-
mials lay: see section 5.3 for further explanation.

nf2 k[1-6]p[1-3] file

Type: file; Default: ""

Specifies up to three polynomial filters for each possible double-flavour pseudo-
fermion which are loaded from the specified file. This file should contain the
following

• Line 1: the polynomial order n

• Lines 2 to n+ 1: the polynomial roots zi, specified as complex numbers
via 2-tuples (x,y) = x+ iy.

IMPORTANT: the current implementation of polynomial filtering as-
sumes that z∗i = zn−i+1, so the roots should be specified in an order
that obeys this.

See data/testpoly nf2 p4.txt for an example.

The polynomials are expected to be defined from finest to coarsest, i.e. in

28

3. Usage

decreasing order.

The polynomial is loaded directly into the action term, giving Si = φ†iP (K)φi.
This is important to note when using multiple filters. The polynomial for
the correction term φ†[KP (K)]−1φ is calculated in the code as the product
of all the polynomial filters P (K) plus a zero root K.

hmc dsfp k[1-6][1-4]

Type: integer; Default: 0

Specifies the integration time-scales for each part of the specified polynomial-
filtered actions.

Note that due to the way the polynomial filters are initialized, the action
terms are in the reverse order. See section 3.3.18 for more details.

nf1 k[1-6]p1

Type: integer; Default: 0

Specifies a polynomial filter via its order for each single-flavour pseudo-
fermion. This polynomial is a built-in Chebyshev polynomial that approxi-
mates the inverse square root over the range [5e-3,3].

For more polynomial filters in PF-RHMC, please use the polynomial reading
facilities provided by nf1 k1p1 file.

nf1 k[1-6]p[1-3] file

Type: file; Default: ""

Specifies up to three polynomial filters for each possible single-flavour pseudo-
fermion via loading from the specified file. They are expected to be defined
from finest to coarsest.

See nf1 k[1-6]p[1-3] file for an explanation of the file format. An exam-
ple file is available at data/testpoly nf1 p4.txt.

The polynomial for the correction term φ†P (K)−1R(K)φ is calculated in the
code as the product of all the polynomial filters.

hmc dsfr k[1-6]p[1-3]

Type: integer; Default: 0

Specifies the integration time-scales for each part of the specified polynomial-
filtered actions for single-flavour pseudo-fermions.

Note that due to the way the polynomial filters are initialized, the action
terms are in the reverse order. See section 3.3.18 for more details.

29

3. Usage

3.3.12. Truncated rational HMC (tRHMC)

For an explanation of truncated RHMC, see section 5.5. Note that the current imple-
mentation requires the use of the Zolotarev approximation (hmc zolo).

nf1 k[1-6] trunc[1-3]

Type: integer; Default: 0

Specifies up to 3 truncation indices for each single-flavour rational approx-
imation RHMC. The specified indices are the points at which the rational
approximation is cut, with the ratapp shifts being ordered from largest t=1

to smallest t=n.

As the code assumes filters are ordered from finest to coarsest, the filters
should be decreasing.

hmc dsfr k[1-6]t[1-3]

Type: integer; Default: 0

Specifies the integration time-scales for tRHMC actions. These are ordered
in reverse relative to the action terms, see section 3.3.18 for more details.

3.3.13. Start parameters

The following parameters only take effect if the -c flag is not used, implying that the
job is an initial HMC run.

start configuration

Type: enum; Default: cold

A string that determines how the initial gauge configuration is produced:

• cold: start from scratch with U = I

• hot: start from scratch with U set randomly

• file: load from a given file. Requires start ildg file xor start info file.

start ildg file

Type: file; Default: ""

Specifies the ILDG .lime file from which we should read the initial gauge
configuration. Mutually exclusive with start info file.

start info file

Type: file; Default: ""

Specifies the BQCD .info file from which we should read the initial gauge
configuration. Mutually exclusive with start ildg file.

30

3. Usage

start random

Type: enum or integer; Default: ""

Specifies the random seed (an integer) that initializes the random number
generator at the start of a Markov chain:

• default: use a default seed built into BQCD.

• random: produce a seed at random.

• (integer): use the given integer as the seed.

Of these three options, the third is recommended as this ensures that the
runs are reproducible yet still ‘random’ between different runs.

3.3.14. Configuration I/O

For further information, see section 3.4 to section 3.6.

io restart format

Type: enum; Default: bqcd

Specify the format [bqcd|bqcd2|ildg] for reading/saving configurations at
the start/end of each execution for checkpointing. Such configurations are
saved at the end of every execution of the code, and read when starting a
continuation run via -c (see also section 6.7).

io conf format

Type: enum; Default: bqcd

Specify the format [bqcd|bqcd2|ildg] for saving configurations after cer-
tain trajectories as specified by mc save frequency (see also section 6.7).

io bqcd restart filename

Type: string; Default: "bqcd.%R3"

Specify the names (w/o extension) of checkpoint/restart files in bqcd or
bqcd2 io restart format (for the %-macro expansion see section 3.5).

io bqcd conf filename

Type: string; Default: "bqcd.%R3.%T5"

Specify the names (w/o extension) of files for saved configurations in bqcd

or bqcd2 io conf format (for the %-macro expansion see section 3.5).

ildg precision

Type: integer; Default: 64

Sets the precision (in bits [32|64]) for ILDG files saved explicitly via
mc save frequency.

31

3. Usage

ildg precision restart

Type: integer; Default: 64

Sets the precision (in bits [32|64]) for checkpoint ILDG files.

ildg filename prefix

Type: string; Default: "bqcd.%R3"

Specifies the prefix used when explicitly outputting ILDG files. This should
contain information about the simulated ensemble as a whole. (for the %-
macro expansion see section 3.5)

Saved ILDG configurations are named <prefix><middle>.<extension>, and
ILDG restart files are named bqcd.<run>.<extension>, where

• <prefix> = ildg filename prefix

• <middle> = ildg filename middle

• <extension> = ildg filename extension

• <run> = run

ildg filename middle

Type: string; Default: ".%T5"

Specifies the ‘middle’ part used when explicitly outputting ILDG files. This
should about contain information each individual configuration. (for the
%-macro expansion see section 3.5)

ildg filename extension

Type: string; Default: "lime"

Specifies the extension part used when outputting ILDG files.

ildg template ensemble

Type: file; Default: ""

Specifies the path to the template XML file for saving ensemble metadata.
The produced ensemble XML file is saved as <prefix>.xml

(see ildg filename prefix for an explanation).

ildg template conf

Type: file; Default: ""

Specifies the path to the template XML file for saving per-configuration meta-
data. The produced configuration XML files are saved as <prefix><middle>.xml
(see ildg filename prefix for an explanation).

ildg markov chain uri

Type: string; Default: "mc://UNDEFINED"

32

3. Usage

Specifies the Markov Chain URI to be placed in the ensemble XML file.
It fills out the corresponding template parameter in the XML file. This
information is used for tagging on an ILDG database.

ildg data lfn path

Type: string; Default: "lfn://UNDEFINED"

Specifies the LFN for the ensemble XML file. It fills out the corresponding
template parameter in the XML file. This information is used for tagging on
an ILDG database.

ildg participant name

Type: string; Default: ""

Field for the code user’s name in the XML files. It fills out the corresponding
template parameter in the XML file.

ildg participant institution

Type: string; Default: ""

Field for the code user’s institution in the XML files. It fills out the corre-
sponding template parameter in the XML file.

ildg machine name

Type: string; Default: ""

Field for the name of the machine BQCD is used on in the XML files. It fills
out the corresponding template parameter in the XML file.

ildg machine institution

Type: string; Default: ""

Field for the institution of the machine BQCD is used on in the XML files.
It fills out the corresponding template parameter in the XML file.

ildg machine type

Type: string; Default: ""

Field for the type of the machine BQCD is used on (e.g. BlueGene) in the
XML files. It fills out the corresponding template parameter in the XML
file.

3.3.15. Markov Chain

mc steps

Type: integer; Default: 1

An integer that specifies how many Markov Chain trajectories should be

33

3. Usage

calculated for this execution run.

mc save frequency

Type: integer; Default: 1

An integer that specifies how often to save the gauge configuration. If
mc save frequency = n, then every nth gauge field configuration is saved to
file. The file type is specified by io conf format.

mc total steps

Type: integer; Default: 1

An integer that specifies the maximum number of Markov Chain trajectories
that should be calculated over all runs from this input file. When the tra-
jectory counter reaches this number, a .STOP file is produced and no more
trajectories are calculated.

3.3.16. Hybrid Monte Carlo

hmc trajectory length

Type: integer; Default: 1

Specifies the length τ of each trajectory.

hmc accept first

Type: integer; Default: 0

An integer that specifies how many trajectories at the start of a simulation
are forced to be accepted. This is necessary for some configurations to ensure
we don’t get stuck. The force acceptance can span several runs of the code.
The logs for these trajectories are given in the table %fa.

This should be set to zero if starting from a file, as forced acceptance will
inevitably take the system out of equilibrium.

hmc test

Type: flag; Default: 0

An integer that acts as a logical flag for HMC reversibility testing. This
causes BQCD to calculate a trajectory both forwards and backwards, report
on the difference between the initial and final states in the section HMCtest

of the output file, then finish.

3.3.17. Integrator specification

hmc steps

34

3. Usage

Type: integer; Default: 0

An integer that specifies how many integration steps to take per trajectory
at the coarsest scale, time-scale #1. The corresponding step-size h is given
by h = τ

nsteps
.

hmc genint

Type: flag; Default: 0

A flag for activating the use of the generalized multi-scale integration scheme,
as opposed to the default nested multi-scale scheme. This scheme overlays
different integration schemes for each time-scale onto a single time step axis,
such that any number of steps can be used on each time-scale. See section 5.4
for more details.

Note that using the generalized scheme changes the meaning of hmc m scale.

hmc m scale, hmc m scale[2-5]

Type: integer; Default: 1

An integer that specifies, by default, the relative scaling between successive
time-scales. If hmc genint is on, then this keyword specifies the absolute
number of integration steps at this time-scale.

In the default case, if hmc_m_scale=2, then for every space update step at
the top level we have two integration steps at the second level. Note that
this does not necessarily mean there are 2 space steps on the second level for
every space step in the top level – an integration step can have several space
steps.

The time scales are indexed as 1:hmc_steps, 2:hmc_m_scale, 3:hmc_m_scale2
etc. This indexing is used by both the time-scale specification keywords (sec-
tion 3.3.18), and the integrator specification keywords hmc integrator.

hmc integrator[1-6]

Type: enum; Default: LPFSTS for 1–3, NON for 4–6

Strings that specify which integrators to use at each time-scale. and must be
specified for each time-scale used. The number of integration steps at each
time-scale are defined via hmc steps and hmc m scale.

• LPFSTS: use the space-time-space leapfrog integrator

• LPFTST: use the time-space-time leapfrog integrator

• 2MNSTS: use the space-time-space 2nd order minimal-norm integrator

• 2MNTST: use the time-space-time 2nd order minimal-norm integrator

• 4MN4FP: use the position-space version of the 4th order minimal-norm
integrator

35

3. Usage

• 4MN5FV: use the vector-space version of the 4th order minimal-norm
integrator

• NON and otherwise: treated as a blank; will cause an error if this scale
is required.

3.3.18. Time scale specifiers

Also see hmc m scale, hmc integrator.

• hmc_dsg: The integration time-scale for the plaquette part of the gluonic action,
Splaq.

• hmc_dsig: The integration time-scale for the improved part of the gluonic action,
Sg − Splaq.

• hmc_dsd: The integration time-scale for the clover determinant, Sdet.

• hmc_dsf_k[1-6][1-4]: The integration time-scales for the double-flavour pseud-
ofermions for standard HMC and mass preconditioned HMC.

The corresponding action terms go from finest to coarsest, which is reverse from
the usual action decomposition. For example, for a single Hasenbusch filter

SF = φ†1(W
†W)−1φ1 + φ†2W (M †M)−1W †φ2, (2)

hmc_dsf_k11 specifies the scale on which S2 (the fine, light correction term) is
integrated and hmc_dsf_k12 specifies the scale on which S1 (the coarse, heavy
filter term) is integrated.

• hmc_dsfp_k[1-6][1-3]: The integration time-scales for the double-flavour pseud-
ofermions for polynomial-filtered HMC.

The corresponding action terms go from finest to coarsest, which is reverse from
the usual action decomposition. Also note that in a pure polynomial-filtered case,
the keywords hmc_dsf_k[1-6]1 specify the scale of the final correction term.

For example, in the two filter case, the low order polynomial filter term S1 =
φ†1P1(K)φ1 has order p1 = hmc_k1p2 and time scale hmc_dsfp_k12, the interme-
diate term S2 = φ†2Q(K)φ2 has order q = p2 − p1 where p2 = hmc_k1p1 and time
scale hmc_dsfp_k11, and the correction term S3 = φ†3[P2(K)K]−1φ3 has time scale
hmc_dsf_k11.

In the case of polynomial-filtered Hasenbusch (PF-MP), we have polynomial filters
on top of Hasenbusch filters, so the polynomial correction term has time scale
hmc_dsf_k12 corresponding to the heaviest Hasenbusch term.

• hmc_dsfr_k[1-6]: The integration time-scales for the single-flavour pseudofermions
with RHMC.

36

3. Usage

• hmc_dsfr_k[1-6]p[1-3]: The integration time-scales for the single-flavour pseud-
ofermions for polynomial-filtered RHMC. The same ordering caveats apply as for
hmc_dsfp_k[1-6][1-3].

• hmc_dsfr_k[1-6]t[1-3]: The integration time-scales for the single-flavour pseud-
ofermions for truncated RHMC.

The corresponding action terms go from finest to coarsest. For example, in the dou-
ble truncation case, the cheapest truncation term S1 has time scale hmc_dsfr_k1t2
and has a rational approximation that spans indices [1, nf1_k1_trunc2], the in-
termediate term S2 has time scale hmc_dsfr_k1t1 and spans [nf1_k1_trunc2+1,
nf1_k1_trunc1], and the final correction term S3 has time-scale hmc_dsfr_k1

and spans [nf1_k1_trunc1+1, n].

3.3.19. Solver parameters

solver outer solver

Type: enum; Default: cg

Specifies the iterative solver used to invert fermion matrix W †W .

• cg: standard conjugate gradient

• dd: domain decomposition solver

• bicgstab: stabilized bi-conjugate gradient

• gmres: generalized minimal residual method

• gcrodr: generalized conjugate residual with inner orthogonalization
with deflated restarting

• cg_mix: mixed-precision conjugate gradient

• bicgstab_mix: mixed-precision stabilized bi-conjugate gradient

• qudacg: conjugate gradient by using QUDA

solver inner solver

Type: enum; Default: cg

Specifies the inner iterative solver for the mixed-precision inversion schemes.

• cg: standard conjugate gradient

• bicgstab: stabilized bi-conjugate gradient

solver outer steps

Type: integer; Default: 20

For mixed precision inversion schemes, specifies how many times we use the
outer loop to refine the solution.

37

3. Usage

solver rest

Type: float; Default: 1e-8

Specifies the solver tolerance when inverting the fermion matrix outside of
the molecular dynamics trajectories.

solver rest md

Type: float; Default: 1e-8

Specifies the solver tolerance when inverting the fermion matrix during molec-
ular dynamics trajectories.

solver maxiter

Type: integer; Default: 100

Specifies the maximum number of solver iterations used to invert the fermion
matrix before the program prints an error message and halts, unless using
solver ignore no convergence.

solver ignore no convergence

Type: flag; Default: 0

A logical flag that determines whether we should continue if we have reached
solver maxiter. This is usually a bad idea, so it needs to be set to 2 to be
activated.

solver check solution

Type: flag; Default: 0

A logical flag to determine whether to check the solutions to fermion matrix
inversion explicitly. If switched on (non-zero), the program checks the solu-
tions and outputs several new tables to the main output stream to show the
progression of the solver. This adds to the compute time, and adds a lot of
debug info to the output file, so only use if necessary.

solver mre vectors

Type: integer; Default: 0

Specify how many previous inversion results to use as a basis for the next
initial guess for a fermion matrix inversion via a minimum residual extrapo-
lation (MRE). This can drastically improve the inversion speed. The paper
on this method suggests using 7 for good results.

solver rest cg ritz

Type: float; Default: 1e-8

Specifies the solver tolerance when inverting the fermion matrix for calculat-
ing its eigenvalues.

38

3. Usage

solver stopping criterion

Type: enum; Default: 1

Specifies which stopping criterion is used during fermion matrix inversion.
Writing the system as Ax = b, the possible criterion are:

• 1: r†r <= tol, where r = Ax− b is the residue.

• 2:
√
r†r <=

√
|b| × tol.

fullsolver

Type: enum; Default: eo

Specifies the pre-conditioning used when inverting the fermion matrix W .

• eo: construct an even-odd preconditioned inverse with the iterative
solver mtilsolver

• dd: use domain decomposition

mtilsolver

Type: enum; Default: CGN

Specifies the iterative solver used to invert W when fullsolver=eo.

• CGN: construct from the inverse of W †W , which is solved by conjugate
gradient

• bicgstab: invert W via stabilized bi-conjugate gradient

multi shift block cg qr

Type: flag; Default: 0

Switches multi shift CG to multi shift blocked CG with QR decomposition.
Requires LAPACK.

3.3.20. Measurements

measure minmax

Type: flag; Default: 0

Turns on the measurement of the minimum and maximum eigenvalues for
each Dirac matrix W †W at each trajectory. This is performed using the
CG-Ritz algorithm.

The results are stored in the table %egnv .

measure hadspec

Type: file; Default: ""

This keyword facilitates the construction of meson and baryon quark prop-

39

3. Usage

agators for each configuration during the ‘measuring’ phase of the process.
The provided file determines what is measured and where the output of this
process goes: see data/myhpara in the source code for an example.

measure only

Type: flag; Default: 0

If this flag is on, BQCD will skip the usual HMC process and only per-
form measurements on the saved configurations generated by BQCD. In this
mode, mc steps determines how many configurations are read then mea-
sured, starting from the trajectory measure start traj.

measure start traj

Type: integer; Default: 0

Sets the trajectory number to start taking measurements from in measure only

mode.

measure cooling list

Type: file; Default: ""

Specifies a file containing a list of cooling steps to compute topological charge,
see section 3.8.1.

measure polyakov loop

Type: flag; Default: 0

Turns on Polyakov loop measurement, see section 3.8.2.

measure traces

Type: integer; Default: 0

Turns on and specifies the number of noises to measure fermionic bulk quan-
tities, see section 3.8.3.

measure traces file

Type: file; Default: trace.log

Specifies the log file for fermionic bulk quantities measurement, see sec-
tion 3.8.3.

measure chemical

Type: integer; Default: 0

Specifies how often to measure the phase and log absolute value of the
fermionic determinant by using the direct method, see section 3.8.4.

measure chemical file

Type: file; Default: ""

40

3. Usage

Specifies the log file for measure chemical.

measure schrpcac

Type: integer; Default: 0

Specifies how often to measure fA and fP , used to determine non-perturbative
cSW via the Schrödinger functional method; see section 3.8.5.

measure schrpcac kappa

Type: float; Default: 0

Specifies κ when fA and fP are measured with measure schrpcac.

measure schrpcac csw

Type: float; Default: 0

Specifies cSW when fA and fP are measured with measure schrpcac.

measure schrpcac lambda

Type: float; Default: 0

Specifies λ when fA and fP are measured with measure schrpcac.

measure schrpcac em charge

Type: float; Default: 0

Specifies electromagnetic charge when fA and fP are measured with
measure schrpcac.

measure schrpcac file

Type: file; Default: ""

Specifies the log file for measure schrpcac.

measure wilson flow

Type: integer; Default: 0

Turns on Wilson flow measurement for QCD SU(3) field, see section 3.8.6.

measure wilson flow file

Type: file; Default: ""

Specifies the log file for measure wilson flow.

measure wilson flow steps

Type: integer; Default: 1000

Specifies the number of Runge–Kutta steps for measure wilson flow.

measure wilson flow eps

Type: float; Default: 1d-3

41

3. Usage

Specifies the Runge–Kutta step size for measure wilson flow.

measure wilson flow qed

Type: integer; Default: 0

Turns on Wilson flow measurement for QED U(1) field, see section 3.8.7.

measure wilson flow qed file

Type: file; Default: ""

Specifies the log file for measure wilson flow qed.

measure wilson flow qed steps

Type: integer; Default: 1000

Specifies the number of Runge–Kutta steps for measure wilson flow qed.

measure wilson flow qed eps

Type: float; Default: 1d-3

Specifies the Runge–Kutta step size for measure wilson flow qed.

3.3.21. Compute performance tuning

tuning cg version

Type: integer; Default: 1

Selects the implementation of conjugate gradient solvers. Values: 1 or 2, see
section 7.1.

tuning cg d

Type: integer; Default: 2

Selects the implementation of the hopping matrix multiplication when using
tuning cg version=2. Values: 2, 21, 25 or 35; see section 7.2 and table 1).

tuning cg simd

Type: integer; Default: 0

If set to 1 the optimized SIMD implementation (see appendix D) is used if
tuning cg version is 2.

tuning cg spincol

Type: integer; Default: 1

Selects the layout of spin-colour arrays if tuning cg version is 2. Values:
1 or 22 (see section 7.3.1).

tuning cg clover

42

3. Usage

Type: integer; Default: 1

Selects the layout of clover arrays if tuning cg version is 2. Values: 1 or 2
(see section 7.3.2).

tuning cg loop blocking

Type: integer; Default: 0

If set to 1 loop blocking (see appendix E) is used if tuning cg version is 1
(experimental). Has no meaning if tuning cg version is 2.

tuning cg block length

Type: integer; Default: 256

Sets the block length for loop blocking (see appendix E) if tuning cg loop blocking

is 1. Has no meaning if tuning cg version is 2.

tuning cg mcg block length

Type: integer; Default: 0

If set, defines the block length in loop blocking (see appendix E) for the
multi-shift solver if tuning cg version is 2 (experimental).

tuning cg precision r4

Type: integer; Default: 0

If set to 1 cg is run in single precision if tuning cg version is 1 (experimen-
tal).

tuning cg precision

Type: integer; Default: 64

If set to 32 cg is run in single precision if tuning cg version is 2 (experi-
mental).

tuning xbound sc i

Type: integer; Default: 1

Sets the MPI communication pattern for spin-colour arrays. Values: 0 or 1;
see section 7.4.1.

tuning xbound g i

Type: integer; Default: 1

Sets the MPI communication pattern for gauge field arrays. Values: 0 or 1;
see section 7.4.1.

solver cg poly

Type: flag; Default: 0

Specify which force calculation method to use for the polynomial correction

43

3. Usage

term in PF-HMC:

• 0 (default): Expand the inverse [P (K)K]−1 as a sum over poles, then
calculate the resultant terms using multi-shift CG to get the shifted
inverses [K + zi]

−1.

• 1: Treat P (K)K as a single matrix, and invert it with conjugate gradi-
ent and MRE vectors.

• 2: Same as 0, but invert P (K) then K when constructing [P (K)K]−1φ.

3.3.22. Miscellaneous

replay trick ntau

Type: integer; Default: 0

Specifies the number of steps on the coarsest scale (replacing hmc steps)
when we use the replay trick, and also acts as the flag for the replay trick.

The replay trick is simple: if a trajectory has change in the Hamiltonian
|dH| > replay trick threshold, we do the HMC trajectory again with
replay_trick_ntau steps at the coarsest scale. It also reports on the success
of this technique: whether |dH| is reduced, is increased, or the new trajectory
is not accepted.

replay trick threshold

Type: float; Default: 1.0

Specifies the lower bound for the absolute change in the Hamiltonian |dH|

to activate the replay trick. See replay trick ntau for details.

3.4. File naming conventions

By default file names have one these structures (see examples given below)

bqcd.run

bqcd.run.extension

bqcd.run.timeslice.extension

bqcd.run.trajectory.extension

bqcd.run.trajectory.timeslice.extension

where run is a three digit run number that is set in the input file, trajectory is a five
digit trajectory counter. timeslice is a two digit time coordinate of a time slice (it
will be extended automatically to three digits if Lt > 99).

44

3. Usage

extension is set by the program for bqcd and bqcd2 formats, for the ildg format it
can be set by the ildg filename extension input parameter.

Output formats are described in section 6.7.

3.4.1. input, output and batch log files

These file names are not automatically being generated by the program. We choose
names that fit to the naming scheme:

bqcd.200 input (command line parameter)
bqcd.200.res output (command line parameter)
bqcd.200.input input (command line parameter)
bqcd.200.output output (command line parameter)
bqcd.200.log log file from batch system

3.4.2. Restart files in bqcd format

bqcd.200.count counters: run, job, trajectory

bqcd.200.info configuration metadata
bqcd.200.ran state of random number generator
bqcd.200.00.u timeslice 0 of SU(3) configuration
bqcd.200.01.u timeslice 1, . . .
bqcd.200.02.u

bqcd.200.03.u

3.4.3. Restart files in bqcd2 format

bqcd.200.count counters: run, job, trajectory

bqcd.200.info configuration metadata
bqcd.200.ran state of random number generator
bqcd.200.su3 SU(3) configuration

3.4.4. Restart files in lime format

bqcd.200.lime all restart information

3.4.5. Configuration files in bqcd format

bqcd.200.00010.info configuration metadata
bqcd.200.00010.00.u configuration at trajectory 10, timeslice 0
bqcd.200.00010.01.u configuration at trajectory 10, timeslice 1

45

3. Usage

bqcd.200.00010.02.u . . .
bqcd.200.00010.03.u

3.4.6. Configuration files in bqcd2 format

bqcd.200.00010.info configuration metadata
bqcd.200.00010.su3 configuration at trajectory 10

3.4.7. Configuration files in ildg format

bqcd.200.xml ensemble metadata
bqcd.200.00010.xml metadata of configuration at trajectory 10
bqcd.200.00010.lime binary data of configuration at trajectory 10

3.5. Flexible filenames

The advantage of the default filenames described in section 3.4 is that the names are
short. However, many users prefer to put characteristic metadata into filenames (e.g. β,
κ and the lattice size).

The following macros can be used in filename specifications:

macro replacement
%BE beta

%KL nf2 kappa1

%KS nf1 kappa1

%LL nf2 lambda1

%LS nf1 lambda1

%LX lattice(1)

%LY lattice(2)

%LZ lattice(3)

%LT lattice(4)

%Rn run (n = 1..9 digits)
%Tn trajectory counter (n = 1..9 digits)

The macros can be used with these input parameters:

io bqcd restart filename

io bqcd conf filename

ildg filename prefix

ildg filename middle

3.6. Working with data in ILDG format

46

3. Usage

3.6.1. Restart files

By default the program works with restart files in its own bqcd format. To work with
restart files in ildg format one has to set

io_restart_format ildg

in the input parameter file.

3.6.2. SU(3) configuration files and metadata

In order to work with the ildg data format one has to set:

io_conf_format ildg

The program will then write binary data in lime format as well as ensemble and config-
uration metadata. Currently lime I/O is sequential (the bqcd format allows for parallel
I/O).

Generation of metadata works with templates. On has to provide template files con-
taining placeholders. The syntax for placeholders is #placeholder#, for example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<gaugeConfiguration xmlns="http://www.lqcd.org/ildg/QCDml/config1.3">

<management>

<crcCheckSum>#crc_check_sum#</crcCheckSum>

<archiveHistory>

<elem>

<revisionAction>generate</revisionAction>

<participant>

<name>#participant_name#</name>

<institution>#participant_institution#</institution>

</participant>

<date>#today#</date>

</elem>

</archiveHistory>

</management>

...

The following placeholders are available:

#participant_name#

47

3. Usage

#participant_institution#

#machine_name#

#machine_institution#

#machine_type#

#code_name#

#code_version#

#code_date#

#para_number_steps#

#para_step_size#

#para_time_scale_ratio#

#para_solver_residuum#

#para_rho#

#markov_chain_uri#

#markov_series#

#markov_update#

#Lx#

#Ly#

#Lz#

#Lt#

#beta#

#kappa#

#csw#

#today#

#average_plaquette#

#precision#

#crc_check_sum#

#data_lfn#

Placeholders are defined in ildg/ildg meta.h. Some placeholders can be determined
from the normal input, for others there are special input parameters:

ildg_markov_chain_uri "mc://UNDEFINED"

ildg_data_lfn_path "lfn://UNDEFINED"

ildg_participant_name "UNDEFINED"

ildg_participant_institution "UNDEFINED"

ildg_machine_name "UNDEFINED"

ildg_machine_institution "UNDEFINED"

ildg_machine_type "UNDEFINED"

In any case file names for the templates have to be given:

ildg_template_ensemble "ensemble_template.xml"

ildg_template_conf "config_template.xml"

48

3. Usage

One can also set prefix and extension of the ildg files:

ildg_filename_prefix "qcdsf.%R3"

ildg_filename_extension "lime"

This setting would, for example, generate these configuration files:

qcdsf.200.xml

qcdsf.200.00010.xml

qcdsf.200.00010.lime

3.6.3. Precision

The program can handle ildg files in 32- and 64-bit precision. When reading the
precision is taken from the ildg file. The precision of writing can be set to 32-bit by:

ildg_precision 32 SU(3) configurations
ildg_precision_restart 32 restart files (for testing)

3.6.4. Example of a complete set of ildg settings

io_conf_format "ildg"

ildg_filename_prefix "qcdsf.%R3"

ildg_filename_extension "lime"

ildg_precision 64

ildg_template_ensemble "../data/qcdsf-ensemble-05.xml"

ildg_template_conf "../data/qcdsf-configuration-05.xml"

ildg_markov_chain_uri "mc://ldg/qcdsf/clover_nf2/b5p00kp13000-04x04"

ildg_data_lfn_path "lfn://ldg/qcdsf/clover_nf2/b5p00kp13000-04x04"

ildg_participant_name "Hinnerk Stueben"

ildg_participant_institution "Universitaet Hamburg"

ildg_machine_name "HLRN-III"

ildg_machine_institution "HLRN"

ildg_machine_type "Cray XC40"

3.7. Output – structure of res(ults) file

The output was structured in such a way that it is humanly readable and can be easily
processed with awk. As a consequence each line begins with a keyword which is followed
by data. In addition there are sections. The sections are:

49

3. Usage

>BeginJob

>BeginHeader

>EndHeader

>BeginILDGread

>EndILDGread

>BeginForceAcceptance

>EndForceAcceptance

>BeginMC

>BeginILDGwrite

>EndILDGwrite

>BeginCooling

>EndCooling

>EndMC

>BeginHMCtest

>EndHMCtest

>BeginILDGwrite

>EndILDGwrite

>BeginFooter

>BeginTiming

>EndTiming

>Begintiming2

>Endtiming2

>EndFooter

>EndJob

The Monte-Carlo sections contain tables embedded. A single table can be extracted
from the output using grep or awk, For example:

$ grep %mc bqcd.032.res

T%mc traj e f PlaqEnergy exp(-Delta_H) Acc CGcalls CGitTot CGitMax

%mc 1 1 1 0.4546852837 0.9239828462 0 11 381 37

%mc 2 1 1 0.4743147510 0.6786574618 1 11 360 34

%mc 3 1 1 0.4725616177 1.1718570939 1 11 369 34

%mc 4 1 1 0.4716513122 1.0527896694 1 11 390 36

%mc 5 1 1 0.4607034796 1.0829331352 1 11 385 35

%mc 6 1 1 0.4705402342 0.8272890510 1 11 386 36

%mc 7 1 1 0.4808335455 1.0465054341 1 11 386 36

50

3. Usage

%mc 8 1 1 0.4808963557 1.2053582280 1 11 390 36

%mc 9 1 1 0.4808963557 0.7580344698 0 11 417 39

%mc 10 1 1 0.4820214435 0.8795287474 1 11 403 38

If one is interested in the values only (without the table header)

$ awk ’$1 == "%mc"’ bqcd.032.res

does the job. The general format of a table is:

key trajectory_counter value(s)

Tables introduced at an early stage contain ensemble indices e and f in addition. This is
because a measurement can always belong to two ensembles when working with parallel
tempering.

3.7.1. Header section

The header section contains compile (e.g. program version), input (from parameter
file) and runtime (e.g. date) parameters. For historic reasons the keywords used for
parameters are different from the input file (previous input files only used positional
parameters). Another peculiarity are _1 endings. This ending indicates the ensemble
index (what is only necessary for parallel tempering).

3.7.2. ILDG read and write sections

The ILDG sections contain information about the file being read or written, e.g. the
filename and the ILDG logical filename (LFN). If a restart file is written in ILDG format
the LFN line contains other data, namely the filename, its CRC check-sum, its size in
bytes, run-, job- and trajectory counters.

3.7.3. Monte-Carlo sections (ForceAcceptance, MC, HMCtest)

ForceAcceptance reports on trajectories that were generated without acceptance test
which is sometimes needed at the beginning of a simulation.

MC reports on usual Hybrid Monte-Carlo trajectories including optional measurements
when a new trajectory is finished.

HMCtest reports on a reversibility test. One trajectory is integrated forward and back-
ward. Afterwards energies and fields are compared.

51

3. Usage

3.7.4. Cooling section

This section contains a cooling history with the measurement of the topological charge.

3.7.5. Footer section

In the footer one finds the end of execution date, the elapsed run time and how many
CPUs were used (#CPUs = #cores = MPI processes × OpenMP threads).

3.7.6. Timing sections

Output from profiling. Results are shown in a table that list how often a region was
called and how much time was spent in that region:

Performance

region #calls time mean min max Total

s Mflop/s Mflop/s Mflop/s Gflop/s

For the most interesting regions the number of floating point were counted. In these
cases the table lists the average, minimal and maximal performance per CPU (core) as
well as the overall performance.

52

3. Usage

3.7.7. List of embedded tables

key meaning
%fa forced acceptance logs
%mc main Hybrid Monte-Carlo logs
%pr rectangular plaquettes
%Hold energies at start of trajectory
%Hnew energies at end of trajectory
%Hdif energy differences (∆H)
%Favg average forces in molecular dynamics integration
%Fmax maximal forces in molecular dynamics integration
%Frat force ratios: maximal forces / minimal forces
%Frac forces in RHMC molecular dynamics integration
%Qc topological charge from cooling (cooling history)
%pl Polyakov loop
%tr fermionic bulk quantities (traces)
%it counters of cg iterations
%it4 counters of cg32 bit iterations
%cgChk check of cg solution
%bicgstabChk check of Bicgstab solution
%bicgstabmixChk check of mixed precision Bicgstab solution
%cg_ritz check of Ritz cg solution
%cg_ritz_dd check of Ritz cg solution
%shift check of multi shift solutions
%egnv eigenvalues

3.8. Measurements

Measurements are made at the end of every trajectory.

3.8.1. Topological charge

To measure the topological charge with the cooling method a file must be provided in
which the cooling steps are defined. One has to set

measure cooling list filename

in the input file. The file contains the cooling steps after which the topological charge
and the plaquette are measured. For example,

1

2

5

10

53

3. Usage

20

In this case 20 cooling iterations are made and measurements are performed after cooling
iteration 1, 2, 5, 10 and 20. The corresponding output looks like this:

>BeginCooling

T%Qc traj e f i_cool Q_cool PlaqEnergy

%Qc 1 1 1 1 -0.137916 0.3552673573

%Qc 1 1 1 2 -0.347026 0.1878487312

%Qc 1 1 1 5 -0.650364 0.0555456917

%Qc 1 1 1 10 -0.533735 0.0181235629

%Qc 1 1 1 20 0.000154 0.0051610597

>EndCooling

3.8.2. Polyakov loop

To measure the Polyakov loop, set

measure polyakov loop 1

in the input file.

3.8.3. Fermionic bulk quantities

To measure fermionic bulk quantities, set non zero value

measure traces 1

in the input file. The value is number of noises. You can specify the file log of these
measurements by measure traces file. The corresponding outputs are summarized in
%tr, %trd and %trm.

Traces up to fourth derivative are labeled as:

Tabcd =
1

12N3
sNt

Tr(MaMbMcMd) (3)

where a, b, c, d = 0, 1, 2, 3 and

M0 = 1

M1 = D−1

M2 =
(∂D
∂µ

)
D−1

M3 =
(∂2D
∂µ2

)
D−1

(4)

54

3. Usage

By using these labels we write as(∂
∂µ

)2
ln detD = T0003 − T0022 . (5)

Traces can be extracted by

grep " %tr " res-file |awk ’{printf("%s %s\n", $4, $5)}’ > T0001

grep " %trd " res-file |awk ’{printf("%s %s\n", $4, $5)}’ > T0011

grep " %trd " res-file |awk ’{printf("%s %s\n", $6, $7)}’ > T0111

grep " %trd " res-file |awk ’{printf("%s %s\n", $8, $9)}’ > T1111

grep " %trm01" res-file |awk ’{printf("%s %s\n", $4, $5)}’ > T0002

grep " %trm01" res-file |awk ’{printf("%s %s\n", $6, $7)}’ > T0003

grep " %trm01" res-file |awk ’{printf("%s %s\n", $8, $9)}’ > T0022

grep " %trm02" res-file |awk ’{printf("%s %s\n", $4, $5)}’ > T0032

grep " %trm02" res-file |awk ’{printf("%s %s\n", $6, $7)}’ > T0033

grep " %trm02" res-file |awk ’{printf("%s %s\n", $8, $9)}’ > T0222

grep " %trm03" res-file |awk ’{printf("%s %s\n", $4, $5)}’ > T0322

grep " %trm03" res-file |awk ’{printf("%s %s\n", $6, $7)}’ > T2222

grep " %trm03" res-file |awk ’{printf("%s %s\n", $8, $9)}’ > T0021

grep " %trm04" res-file |awk ’{printf("%s %s\n", $4, $5)}’ > T0031

grep " %trm04" res-file |awk ’{printf("%s %s\n", $6, $7)}’ > T0211

grep " %trm04" res-file |awk ’{printf("%s %s\n", $8, $9)}’ > T0311

grep " %trm05" res-file |awk ’{printf("%s %s\n", $4, $5)}’ > T2111

grep " %trm05" res-file |awk ’{printf("%s %s\n", $6, $7)}’ > T0221

grep " %trm05" res-file |awk ’{printf("%s %s\n", $8, $9)}’ > T0321

grep " %trm06" res-file |awk ’{printf("%s %s\n", $4, $5)}’ > T0231

grep " %trm06" res-file |awk ’{printf("%s %s\n", $6, $7)}’ > T2211

grep " %trm06" res-file |awk ’{printf("%s %s\n", $8, $9)}’ > T2121

grep " %trm07" res-file |awk ’{printf("%s %s\n", $4, $5)}’ > T2221

3.8.4. Determinants for phase reweighting at non-zero chemical potential

To measure determinants for phase reweighting at non-zero chemical potential at every
second trajectory, set

measure chemical 2

in the input file. Following 13 lines per one measurement are printed in dethist.mid mid . jobcount
file.

traj W TrB TrB^2 TrC TrB^3 TrBC TrB^4 TrB^2C TrC^2 log(|A|) arg(A)

traj W_WNE |W_WNE| arg(W_WNE)

traj 0 V^0

traj 1 V^1

55

3. Usage

traj 2 ...

traj 3 ...

traj 4 ...

traj 5 ...

traj 6 ...

traj 7 ...

traj 9 ...

traj 10 ...

where W is det(K), B is K̇, C is K̈, A is A0. 2nd line is

WWNE = exp
[
−

10∑
q=1

(2 cosh(qµ/T)ReV̂ (q) + i2 sinh(qµ/T)ImV̂ (q))
]

(6)

and its absolute value and argument. From 3rd line V̂ (q) are printed for each trace. Each
value is defined in Ref. [40].

3.8.5. fA and fP

To measure fA and fP for non-perturbative determination of cSW at every second tra-
jectory, set

measure schrpcac 2

in the input file. The corresponding output looks like this:

traj t+1 fA(t) fP(t) fA’(T-t) fP’(T-t)

2 2 -0.10939226E+02 0.32266553E+02 -0.56909470E+01 0.17781391E+02

2 3 -0.34826553E+01 0.87987951E+01 -0.19998378E+01 0.40562673E+01

2 4 -0.10307930E+01 0.19997526E+01 -0.87475663E+00 0.11811545E+01

4 2 -0.10427659E+02 0.36927566E+02 -0.57629684E+01 0.18859736E+02

4 3 -0.49157290E+01 0.13352503E+02 -0.31013816E+01 0.54608054E+01

4 4 -0.19897425E+01 0.38296835E+01 -0.18940843E+01 0.23258797E+01

3.8.6. Wilson flow for QCD field

To measure Wilson flow for QCD field at every second trajectory, set

measure wilson flow 2

in the input file. The corresponding output looks like this (12 digits are printed in actual
output):

traj, t, Ep(t), Ec(t), Ec(t)t^2, t* dt Ec(t)^2, Qtop, (1-Ep(t))t^2

56

3. Usage

0 0.00E+00 0.22E+00 0.22E+01 0.00E+00 0.00E+00 -0.91E-01 0.00E+00

0 0.10E-01 0.25E+00 0.22E+01 0.22E-03 0.22E-03 -0.96E-01 0.74E-04

0 0.20E-01 0.27E+00 0.23E+01 0.93E-03 0.14E-02 -0.10E+00 0.29E-03

0 0.30E-01 0.29E+00 0.23E+01 0.21E-02 0.35E-02 -0.10E+00 0.63E-03

where t is flow time, Ep(t) is plaquette energy, Ec(t) is clover energy and Qtop is
topological charge.

3.8.7. Wilson flow for QED field

To measure Wilson flow for QED field at every second trajectory, set

measure wilson flow qed 2

in the input file. The corresponding output is same format as Wilson flow for QCD
field.

57

4. Physics

4. Physics

4.1. Gauge actions

The gauge action can be:

• the Wilson action

SG = SWilson
G = β

∑
plaquette

1

3
Re Tr (1− Uplaquette) (7)

• an improved gauge action

SG =
6

g2

[
c0

∑
plaquette

1

3
Re Tr (1− Uplaquette) + c1

∑
rectangle

1

3
Re Tr (1− Urectangle)

]
,

(8)
with c0 + 8c1 = 1.

Depending on the values of the input parameters gauge action and β = beta the
program sets g2, c0 and c1 in the following way:

gauge action g2 c0 c1
WILSON 6/β 1 0
TREE 10/β 1 −1/20
IWASAKI 6/β 3.648 −0.331

4.2. Fermionic actions

The fermionic action can be:

• the Wilson action

SWilson
F =

∑
x

{
ψ̄(x)ψ(x)− κ

[
ψ̄(x)U †µ(x− µ̂)(1 + γµ)ψ(x− µ̂)

+ ψ̄(x)Uµ(x)(1− γµ)ψ(x+ µ̂)
]} (9)

• the Wilson action plus an explicitly parity-flavour symmetry breaking source term,
where τ 3 is the third Pauli matrix

SF = SWilson
F + h

∑
x

ψ̄(x)iγ5τ
3ψ(x) (10)

58

4. Physics

• the clover O(a) improved Wilson action

SF = SWilson
F − i

2
κ cSW

∑
x

ψ̄(x)σµνFµν(x)ψ(x) (11)

• fat link fermions

SF =
∑
x

{
ψ̄(x)ψ(x)− κ ψ̄(x)U †µ(x− µ̂)[1 + γµ]ψ(x− µ̂)

− κ ψ̄(x)Uµ(x)[1− γµ]ψ(x+ µ̂) +
i

2
κ cSW ψ̄(x)σµνFµν(x)ψ(x)

}
,

(12)

where the gauge links Uµ are replaced by stout links [28]

Uµ → Ũµ(x) = eiQµ(x) Uµ(x) , (13)

with

Qµ(x) =
α

2i

[
Vµ(x)U †µ(x)− Uµ(x)V †µ (x)− 1

3
Tr
(
Vµ(x)U †µ(x)− Uµ(x)V †µ (x)

)]
,

(14)
where Vµ(x) is the sum over all staples associated with the link. One can also
replace the gauge link by n times smeared links Un

µ (x) obtained as

Un
µ (x) = eiQ

n−1
µ(x)Un−1

µ (x) . (15)

For SLiNC fermions, n = 1 and α = 0.1,

fermi_action SLRC

csw 2.65 see [10]
n_stout 1

alpha 0.1

• the hopping term with chemical potential µ (chemi, chemi i)

− κ
3∑
i

[
ψ̄(x)U †i (x− î)(1 + γi)ψ(x− î) + ψ̄(x)Ui(x)(1− γi)ψ(x+ î)

]
− κ

[
ψ̄(x)U †4(x− 4̂)(1 + γ4)e

−µψ(x− 4̂) + ψ̄(x)U4(x)(1− γ4)eµψ(x+ 4̂)
] (16)

• the clover O(a) improved Wilson action + CPT breaking term with coefficient λ
(nf2 lambda[1-6], nf1 lambda[1-6])

59

4. Physics

SF = SWilson
F − i

2
κ cSW

∑
x

[
ψ̄(x)σµνFµν(x)ψ(x) + κλψ̄(x)Hψ(x)

]
, (17)

where H is 4× 4 matrix specified by breaking term formatted as,

--- breaking_term file

Re(H11) Im(H11) Re(H12) Im(H12) Re(H13) Im(H13) Re(H14) Im(H14)

Re(H21) Im(H21) Re(H22) Im(H22) Re(H23) Im(H23) Re(H24) Im(H24)

Re(H31) Im(H31) Re(H32) Im(H32) Re(H33) Im(H33) Re(H34) Im(H34)

Re(H41) Im(H41) Re(H42) Im(H42) Re(H43) Im(H43) Re(H44) Im(H44)

--- breaking_term file

4.3. Schrödinger functional boundary conditions

boundary sf sets Schrödinger functional boundary conditions.

Gauge action is slightly modified with w0 and w1,

SG =
6

g2

[
w0c0

∑
plaquette

1

3
Re Tr (1− Uplaquette) + w1c1

∑
rectangle

1

3
Re Tr (1− Urectangle)

]
,

(18)

w0 =

{
1
2

all links are on boundary
1 otherwise

(19)

w1 =


0 all links are on boundary
3
2

only two links are on boundary
1 otherwise

(20)

Spatial links are fixed to

U(x)|x0=0 = exp(aCk), Ck = iπ
6Lk

diag(−1, 0, 1) ,

U(x)|x0=T = exp(aC ′k), C
′
k = iπ

6Lk
diag(−5, 2, 3) .

(21)

All quark fields are zero on boundary.

4.4. QCD+QED

The program can simulate QCD+QED. The following notation is used

e2 = 1/βQED , eq = Qqe (22)

where e is the electron charge, eq is the electric charge of quark flavour q and

Qu = +2/3 , Qd = Qs = −1/3 (23)

60

4. Physics

for the the up, down and strange quark respectively.

The following actions can be simulated:

S = SG + SA +
∑
q

SqF . (24)

SG is an SU(3) gauge action, SA is the non-compact U(1) gauge action

SA =
βQED

2

∑
x,µ<ν

[Aµ(x) + Aν(x+ µ̂)− Aµ(x+ ν̂)− Aν(x)]2 , (25)

and the fermion action for flavour q is

SqF =
∑
x

{
1

2

∑
µ

[
q(x)(γµ − 1)e−iQqAµ(x)Ũµ(x)q(x+ µ̂)

−q(x)(γµ + 1)eiQqAµ(x−µ̂)Ũ †µ(x− µ̂)q(x− µ̂)
]

+
1

2κq
q(x)q(x)− 1

4
cSW

∑
µ,ν

q(x)σµνFµν(x)q(x)

}
, (26)

where Ũµ is a singly iterated stout link (see eq. (13)). The clover coefficient cSW was
computed non-perturbatively in pure QCD in [38].

The corresponding input keywords are beta qed, nf2 em charge[1-6] x3 and
nf1 em charge[1-6] x3.

4.5. Axion

The program can simulate QCD+Axion. The following actions an be simulated:

S = SG + Sa +
∑
q

SqF . (27)

Sa is the scalar action

Sa = κa
∑
x

∑
µ

(
φa(x)− φa(x+ µ)

)
φa(x) , (28)

where φa is the axion field. The fermion action for flavour q in the case of Wilson
fermions is

SqF =
∑
x

q̄(x)
[
1 + (κqλq + finvφa)γ5

]
q(x)

− κq
∑
x,µ

[
q̄(x)(1− γµ)Uµ(x)q(x+ aµ̂) + q̄(x− aµ̂)(1 + γµ)U †µ(x− aµ̂)q(x)

]
,

(29)

61

4. Physics

where

κq =
1

2amq + 8
,

λq = i2amq
θ

Nf

,

finv = i2κqmq

√
κa

faNf

.

(30)

Note: Non-zero values must be specified for κa (kappa axion), finv (finv axion) and
γ5 by breaking term.

4.6. Observables

4.6.1. Gluonic observables

The following gluonic observables can be measured:

• Average plaquette and average rectangular plaquette (both overall, space-like and
time-like).

• Topological charge. The topological charge is measured with the field theoretic
method after cooling the gauge field configuration.

• Polyakov loop.

4.6.2. Fermionic observables

Some fermionic bulk quantities can be measured (from stochastic estimators):

〈ψ̄ψ〉 =
1

12V
〈Tr(M−1)〉 (’chiral condensate’)

〈ψ̄γ5ψ〉 =
1

12V
〈Tr(γ5M

−1)〉

〈Π2〉 =
1

12V
〈Tr(M †M)−1〉 (’pion norm’)

62

5. Algorithms

5. Algorithms

5.1. Multi timescale integration

In order to explain multi timescale integration we look at the partition function for
Nf=2+1 improved Wilson fermions

Z =

∫
DUDψ̄Dψe−S ,

S = Sg(β) + Sl(κl, cSW) + Ss(κs, cSW) ,

(31)

where Sg is a gluonic action, Sl is an action for the degenerate u- and d-quarks and Ss
is an action for the strange quark. After integrating out fermions

S = Sg(β)− ln[detM †
lMl][detM †

sMs]
1
2 . (32)

We first apply even-odd preconditioning:

detM †
lMl ∝ det(1 + T loo)

2 detQ†lQl , [detM †
sMs]

1
2 ∝ det(1 + T soo)[detQ†sQs]

1
2 , (33)

where

Q = (1 + T)ee −Meo(1 + T)−1ooMoe , T =
i

2
cSW κσµνFµν . (34)

We then separate detQ†lQl following Hasenbusch [33]

detQ†lQl = detW †
l Wl det

Q†lQl

WlW
†
l

, W = Q+ ρ . (35)

Finally we modify the standard action to

S = Sg + Sldet + Ssdet + Slf1 + Slf2 + Ssfr , (36)

where

Sldet = −2 Tr log[1 + Too(κ
l)] , Ssdet = −Tr log[1 + Too(κ

s)] ,

Slf1 = φ†1[W (κl)†W (κl)]−1φ1 , Slf2 = φ†2W (κl)[Q(κl)†Q(κl)]−1W (κl)†φ2 ,

Ssfr =
n∑
i=1

φ†2+i[Q(κs)†Q(κs)]−
1
2nφ2+i .

(37)

We calculate Sfr using the RHMC algorithm [34] with optimised values for n and the
number of fractions. We now split each term of the action into one ultraviolet and two
infrared parts,

SUV = Sg , SIR−1 = Sldet + Ssdet + Slf1 , SIR−2 = Slf2 + Ssfr . (38)

63

5. Algorithms

In [6] we have introduced two different time scales [35] for the ultraviolet and infrared
parts of the action in the leap-frog integrator. Here we shall go a step further and put
SUV, SIR−1 and SIR−2 on three separate time scales,

V (τ) =
[
VIR−2

(
δτ

2

)
Am1 VIR−2

(
δτ

2

)]nτ
,

A = VIR−1

(
δτ

2m1

)
Bm2 VIR−1

(
δτ

2m1

)
,

B = VUV

(
δτ

2m1m2

)
VQ

(
δτ

m1m2

)
VUV

(
δτ

2m1m2

)
,

(39)

where nτ = τ/(δτ) and the V s are evolution operators of the Hamiltonian. The length
of the trajectory τ is taken to be equal to one in our simulations.

5.2. Tuning the rational fraction part

BQCD is able to avoid generating coefficients for the rational approximation every time.
Specific sets of coefficients are implemented in advance (see code in fermi/rhmc). If the
approximation range of generated coefficients is wider than the condition number of X,
BQCD automatically shifts as follows, when range does not cover actual [min, max] of
X

Xα = β−α(βX)α

≈ β−α
[
c0 +

∑
i=1

ci
βX + di

] (40)

where β is the inverse of the minimum eigenvalue of X and ci, di is generated by Remez
algorithm with range for one to the condition number of X, [1, C(X)].

BQCD also supports to tune the rational approximation by given range and approxima-
tion degree in a file

tuning_approx_range_list "rangelist"

Example rangelist file:

1 11 15 2

2 10 14 2

1st column is ID for rational approximation. It starts from 1 and is consistent with rid

in check para region printed to stderr. 2nd column is degree of approximation used to
approximate 1/X−n which is used at MD steps. 3rd column is degree of approximation

64

5. Algorithms

used to approximate 1/X−2n and 1/X+2n which are used at action calculation. 4th
column is a margin factor of approximation range.

To relax the solver tolerance one can specify

tuning_fraction_tolerance "fractiontolerance"

Example fractiontolerance file:

0.0011

0.55

2.2

0.11

In this case, tolerances for 1st, 2nd, 3rd and 4th shift are relaxed by factors of 2000, 4,
1 and 20. This tuning works only if

tuning_approx_range !=0

and BQCD is compiled with FMLIB.

5.3. Polynomial filtering

The basic idea of polynomial filtering [15] (PFHMC or PF) is to use a short polynomial
of the Dirac matrix M as a UV filter of the fermion action. This has parallels with mass
preconditioning, where we use a heavier Dirac matrix as the filter.

5.3.1. Double-flavour case

In the case of a 2-flavour action SF = φ†(M †M)−1φ ≡ φ†K−1φ, we use a polynomial
P (K) of K = M †M that approximates K−1, and the action becomes

SF = φ†1P (K)φ1 + φ†2[P (K)K]−1φ2. (41)

We can also use multiple such filters. Take two polynomials P1(K), P2(K) with or-
ders p1 < p2 which approximate K−1 and factorize into another polynomial Q(K) =
P2(K)/P1(K) of order q. Then we can use the fermion action

SF = φ†1P1(K)φ1 + φ†2Q(K)φ2 + φ†3[P3(K)K]−1φ3. (42)

The polynomials in BQCD for the double-flavour case are implemented as Chebyshev
polynomials, which take the form

Pn(K) = cn

n∏
i=1

(K − zi) (43)

65

5. Algorithms

with roots

zi = µ(1− cos θk) + i
√
µ2 − ν2 sin θk, θk =

2πk

k + 1
, (44)

and normalization

cn =

[
µ

n∏
i=1

(µ− zi)

]−1
. (45)

Here, µ and ν are two real, positive parameters with ν < µ.

The roots describe an ellipse in the complex plane, centred at iµ with semi-major axis
µ in the complex direction and semi-minor axis

√
µ2 − ν2. This ellipse is traversed in

an anti-clockwise direction, with θk denoting the corresponding angle. µ and ν should
be chosen such that the described ellipse sufficiently encapsulates the eigenvalues of the
fermion matrix K, as otherwise we reach numerical instabilities.

In the case of multiple filters, we can ensure the factorization of Chebyshev polynomials
Pm(K) and Pn(K) (n > m) by fixing (µ, ν) and setting mod (n+ 1,m+ 1) = 0.

The polynomials filters can also be read in from file via nf2 k[1-6]p[1-3] file, but
the onus is on the user to choose appropriate polynomials. See the corresponding input
keyword documentation for information about the required file format. Note that these
are read straight into the action term, so (e.g.) nf2 k1p2 file is interpreted as Q(K).

5.3.2. Single-flavour case

In the case of a single-flavour action, SF = φ†R(K)φ where R(K) ≈ K−1/2 is a rational
approximation, we use a polynomial P (K) that approximates K−1/2, and the action
becomes

SF = φ†1P (K)φ1 + φ†2P (K)−1R(K)φ2. (46)

We can also use multiple such filters: take two polynomials P1(K), P2(K) with orders
p1 < p2 where P1(K) ≈ K−1/2 and P2(K) ≈ P1(K)−1K−1/2. Then we can use the
fermion action

SF = φ†1P1(K)φ1 + φ†2P2(K)φ2 + φ†3[P1(K)P2(K)]−1R(K)φ3. (47)

The single-filter case is implemented in code via a set of fixed Chebyshev approximations
to K−1/2.

For multiple filters, the polynomials are read from file via nf1 k[1-6]p[1-3] file,
which reads polynomials directly into P1, P2 as above. See the corresponding input
keyword documentation for information about the required file format.

5.4. The generalized multi-scale integration scheme

The generalized integration scheme [16], activated via hmc genint, starts by considering
each time-scale having an integrator of their own Hamiltonian Hi = T + Si, where Si is

66

5. Algorithms

the action term on a time-scale. These integrators are then combined with respect to
the time update steps T to form an integrator for the full Hamiltonian H = T +S. The
way this works is to treat the time steps T (ε) as advancing some time parameter from
0 to h over the course of the trajectory, then superimpose the schemes for each Hi onto
this axis. A more rigorous explanation of this technique is given in [16], Appendix B.

The advantage of this technique over the usual nested integrator as in section 5.1 is that
one has far more freedom in the choice of step-sizes: a step-size only has to neatly factor
the trajectory length, rather than each coarser step-size.

When you use generalized integrators in BQCD, the time-scale specifiers hmc m scale

actually refer to the absolute number of steps at each scale, rather than (in the nested
case) the number of integration steps at this scale per space update step S at the next-
coarsest scale. This difference is especially important to note for the improved integrators
such as 2MNSTS, because these have several S updates per integration step. For example,
assuming 2MNSTS integrators, the input keywords

hmc_genint 0

hmc_steps 10

hmc_m_scale 1

hmc_m_scale2 2

produce the same integrator as

hmc_genint 1

hmc_steps 10

hmc_m_scale 20

hmc_m_scale2 80

5.5. Truncated RHMC (tRHMC)

Truncated RHMC (tRHMC) is a filtering method for single-flavour pseudo-fermions. We
first express the rational approximation of RHMC in the form

R(K) = R1,n(K) = cn

n∏
i=1

K + ai
K + bi

(48)

with ai > ai+1, bi > bi+1 and K = M †M . If R1,t(K) forms an approximation to target
power of K (e.g. K−1/2 in the standard case) for all 1 ≤ t ≤ n, then we can use this
truncated rational approximation as a filter, giving action

StRHMC = φ†1R1,t(K)φ1 + φ†2Rt+1,n(K)φ2, (49)

where we define

Ri,j(K) = cn
δi1

j∏
k=i

K + ak
K + bk

. (50)

67

5. Algorithms

The filter term φ†1R1,t(K)φ1 thus acts as a UV filter here, and can be placed on a finer
time-scale.

Currently, tRHMC is only implemented for Zolotarev approximations (hmc zolo). This
was chosen because the built-in rational approximation is stored as a sum over poles,
which would make implementing the term-splitting as above in tRHMC more difficult.
Also, the Zolotarev approximation satisfies the condition that a truncation roughly ap-
proximates 1/K.

Additional filters can be added with increasing truncation order t2 > t1:

StRHMC = φ†1R1,t1(K)φ1 + φ†2Rt1+1,t2(K)φ2 + φ†3Rt2+1,n(K)φ3. (51)

5.6. The Zolotarev optimal rational approximation

The Zolotarev optimal rational approximation approximates the inverse square-root
R(K) ≈ K−1/2, and is constructed from elliptic functions. It can be shown that this
approximation minimizes the error δ, defined as the maximum difference between R(K)
and K−1/2 on the given range, for the set of all rational approximations with the same
order and range, and is thus ‘optimal’. See e.g. [39] for more information.

Refer to the keyword documentation in section 3.3.8 for information on how to use this
approximation in BQCD.

68

6. Implementation issues

6. Implementation issues

In this section we explain why things in BQCD are the way they are.

6.1. Programming language

BQCD is mainly written in Fortran. The reasons for this decision were the following.
First of all, the programmer was a Fortran programmer. C was not chosen because it
was not plausible to write a program that used complex arithmetic almost throughout
in a language that had no support for that (or better to say only had added complex
arithmetic in C99). C++ was considered but the feeling was that at least a first imple-
mentation would have been completed before it would be understood how to use C++

effectively.

The main disadvantages of this decision became visible when the program became more
and more complex. Fortran90 eventually supported dynamical memory management
but there was no support for dynamical algorithms, i.e., there were no function pointers
(procedure pointers available in Fortran2003). The second disadvantage is that working
with classes instead of arrays would offer new possibilities like introducing different
orderings of the lattice sites which is an interesting optimisation option (of course this
can be done in the current approach but the program will become less readable).

One design goal was to write readable code. We have to leave to the reader to check
how well this was achieved.

6.2. Preprocessing

6.2.1. C preprocessor

The C preprocessor was employed from the beginning. It is used for conditional com-
pilation and for macro processing. By convention all BQCD source files have the suffix
.F90. The suffix of the preprocessed file is .f90. In some cases several .f90 files are
being generated from a .F90 file. The .f90 file are being compiled. They are always
kept such that one can always check the result of preprocessing.

Macro names are all uppercase (sometimes mixed case). Fortran code is always lower-
case.

There are macros with and without arguments. Macros without arguments are used for
defining constants and datatypes. The motivation for this was mainly readability (and
aesthetics we have to admit), compare ’BQCD style’

include "defs.h"

69

6. Implementation issues

GAUGE_FIELD :: u

COMPLEX :: x, y

...

x = TWO * y + u(...)

with a pure Fortran style:

use defs

type(gauge_field) :: u

complex(rkind) :: x, y

...

x = const%two * y + u%u(...)

Macros with arguments are used as tools, e.g. the ASSERT and ALLOCATE macros and
for simplifying programming. When marcos are used for the latter purpose it is a good
idea to look at the .F90 and the generated .f90 files when studying the source code.

Over the years C preprocessors became more picky. For example, the GNU preprocessor
now refuses to process general Fortran90 code. In some situations C preprocessors
complain about the Fortran % character (which is a separator in Fortran but an operator
in C) and the dots in Fortran operators like .or. (because dots are separators in C).
In some situations it became necessary to introduce a second preprocessing step, see
tool/fpp_step2.

The latest change was the need to add --sysroot=. to cpp calls (otherwise C style
comments from some standard C include files would appear in the Fortran code).

6.2.2. m4 macro preprocessor

The m4 macro processor is also used. In this case there are two preprocessing steps:
first a .F90 file is generated and then a .f90 file.

6.2.3. loopp loop preprocessor

In order to facilitate generic programming with SIMD intrinsics a loop preprocessor,
called loopp, was written. For example, it would expand

DO K = 1, 2

DO J = 1, 2

DO I = 1, 2

70

6. Implementation issues

c%%I%%J = a(I, K) * b(K, J) + c%%I%%J

ENDDO

ENDDO

ENDDO

to:

c11 = a(1, 1) * b(1, 1) + c11

c21 = a(2, 1) * b(1, 1) + c21

c12 = a(1, 1) * b(1, 2) + c12

c22 = a(2, 1) * b(1, 2) + c22

c11 = a(1, 2) * b(2, 1) + c11

c21 = a(2, 2) * b(2, 1) + c21

c12 = a(1, 2) * b(2, 2) + c12

c22 = a(2, 2) * b(2, 2) + c22

6.3. Fortran modules

Modules are used for storing global data, type definitions and a few interface definitions.
Global data is always readonly except for its initialisation (there are a few exceptions to
this rule). In general, modules do not contain functions or subroutines. The idea behind
this is that it should always be possible to call functions or subroutines from C/C++ if it
should become necessary to do so. Modules that are only used within the same file are
put into that file. Modules that are used by more than one file are put into the modules

subdirectory.

6.4. Precision

Also from the beginning it was foreseen that one might be interested in multi-precision
code. In principle one can compile any version of BQCD using single precision arithmetic
if one defines:

#define RKIND 4

#define BQCD_REAL mpi_real4

This feature was used much later to generate multi-precision code. The recipe is the
following.

• The original source file, foo.F90 say, is compiled as usual with double precision
arithmetic.

71

6. Implementation issues

• A single precision version foo_r4.F90 is generated. It contains only four lines:

#define PRECISION_R4

#include "defs.h"

#include "defs_r4.h"

#include "foo.F90"

• defs_r4.h contains macros for renaming all subroutines and functions, e.g.:

#define fun1 fun1_r4

#define fun2 fun2_r4

Again there is also a Fortran way of handling the multi-precision problem. One can use
interfaces and overloading (see su3sc/module_sc.F90).

6.5. Parallelisation

The early versions of BQCD were parallelised by using the shmem library from Cray.
Later an MPI version was added and also a single processor version that can be compiled
without any message passing library. Currently only the MPI and single processor
version work (the routines using shmem are still contained in the distribution). All files
that use calls to message passing routines are located in directory comm. Which message
passing library to use can be selected in Makefile.var.

BQCD is parallelised with OpenMP in addition. On the Hitachi SR8000 this lead to
great performance by overlapping communication and computation. In order to facilitate
OpenMP programming, BQCD routines contain typically only one loop. It is then
straightforward to add OpenMP private and reduction declarations: the candidates can
be found in the type declarations of the routine (implicit none is used throughout).

The parallel design is such that results are independent of the numbers of processes used.
This is true up to rounding errors introduced by global summations. In a job chain one
can change the number of processes in every job. This feature was implemented, of
course, in order to be able to adapt to changing job mixes at computer centres.

6.6. Random numbers

The first random number generator used was ranf by Cray because it has the ability
to jump to an arbitrary position in the sequence of random numbers and this operation
is not much more expensive than generating the next random number. This skipping
of random numbers was reversely engineered such that it was also available on other
computers. Skipping is used to generate distributed random numbers in such a way that
results become independent of the number of processes.

For running production ranlux [36, 37] is the recommended random number generator.
In the beginning, the same skipping mechanism as for ranf was used. As a consequence

72

6. Implementation issues

generation of random numbers was not parallelised (random numbers did not have to be
communicated, but rather every process generated all random numbers, and only picked
the ones belonging to its local lattice). Up a moderate number of parallel processes the
overall performance loss is acceptable.

For running on very many processes, parallel generation of ranlux numbers is available.
There is one random number generator per (x, y)-plane. On each plane the skipping
mechanism described above is used. In total there are Lz × Lt instances of ranlux. The
size of the state of all random number generators is only Lz × Lt × 105 integers which
can easily be stored with every configuration (when using one generator per lattice site,
storage requirements would roughly double). In order to use parallel random number
generation tuning ran field parallel has to be set to 1.

6.7. Saving and reading configurations

Internally BQCD differentiates between restart files and files that are supposed to be
saved. However, the file structures are the same. Every set of files can be used for
restarting a job chain. They contain all internal states (of counters and random number
generators).

6.7.1. I/O format bqcd

BQCD’s file format for configurations was designed to enable simple parallel I/O. Meta-
data is kept separate (.info files) from binary data (.u files). To enable parallel I/O one
binary file is written for each timeslice. Again, the design is such that everything works
on any number of processes. All binary data is written to disk in big endian format.
BQCD automatically converts to little endian if necessary. Only two columns of SU(3)
matrices are stored. Checksums are calculated on the fly and added to the metadata.
Checksums can be verified with standard cksum command. This file format is called
bqcd.

6.7.2. I/O format bqcd2

The bqcd2 format differs from the bqcd format in that it writes binary data to a single
file using MPI-I/O. Again, metadata is stored in .info files. Binary data is stored in
.su3 files.

6.7.3. I/O format ildg

Alternatively lime files can be written conforming to the ILDG standard [26]. Restart
files are always written in 64 bit precision. Configurations can be saved in 32 or 64 bit
precision. This kind of I/O is not parallelised.

73

6. Implementation issues

6.8. Performance measurements and profiling

A simple profiling mechanism was built in. It can be switched on by defining the
TIMING macro. If it is switched off there is no overhead. In the most important routines
operations were counted manually in order to get performance figures.

6.9. Fermionic boundary conditions

BQCD started with having only one copy of the gauge field. Fermionic boundary condi-
tions were imposed by multiplying SU(3) links with -1 accordingly. Flipping boundary
conditions between gluonic and fermionic is handled by subroutine flip_bc(). It has
to be called before and after fermionic operations.

One can optimise the hopping matrix multiplication by introducing a copy of the gauge
field that has an optimised storage ordering. This copy then has fermionic boundary
conditions (and might also include factors 2 from the (1± γ4) projection).

6.10. C interface

C routines have to be called here and there. Examples are checksum calculations, ranlux
random numbers and I/O of lime files. The Fortran name mangling scheme is selected
by defining NamesToLower, NamesToLOwer_ or NamesToLower__, respectively.

6.11. Input parsing

The input parser checks whether keywords are known but does not check the rest of the
line! It is easy to add a new keyword. New keywords can be introduced by adding them
to modules/module_input.h. A similar mechanism was used to introduce placeholders
for ILDG metadata files (see ildg/ildg_meta.F90).

74

7. Compute performance tuning

7. Compute performance tuning

Several parameters that affect compute performance can be set at compile- or run-time.

Up to version 4 of BQCD performance tuning concentrated on the hopping matrix
multiplication (see section 7.2). Highest optimizations were achieved by Thomas Streuer
who added assembler routines for this operation for IBM BlueGene/L and -/P as well
as for SGI Altix 4700. The version of the hopping matrix multiplication to be used was
specified at compile time.

The current version includes optimized routines that are programmed with SIMD in-
trinsics (cf. appendix D). The extent of optimization with SIMD is wider: now whole
solvers are being worked on (see the following section).

7.1. Conjugate gradient solvers and SIMD vectorization

SIMD vectorization requires to rethink and recode large parts of the basic implemen-
tation. For a portable SIMD implementation the array layout has to be adapted (see
appendix D and section 7.3.3). This implies that also neighbour lists and communication
routines have to be changed accordingly.

Changing the array layout in the whole program would be too demanding. On the other
hand, restricting the new layout to the hopping matrix multiplication would generate too
much overhead, because input and output arrays would have to be reordered between
the old and new layout in every call. However, reordering arrays at the beginning and
end of a whole solver is acceptable.

In the new code many variants and implementations can be chosen an run-time. The
main choices can be made by setting the following input parameters (see also sec-
tion 3.3.21):

tuning cg version use old or new/SIMD version (1 or 2)
tuning cg d implementation of the hopping matrix multiplication, see section 7.2
tuning cg simd use SIMD or not (1 or 0)
tuning cg spincol layout of spin-colour arrays, see section 7.3.1
tuning cg clover layout of clover arrays, see section 7.3.2

7.2. Hopping matrix multiplication

The most time consuming part of a QCD program is the hopping matrix multiplication
(a.k.a. d-slash operation). Over time several optimizations of this operation were imple-
mented. There are high and low level optimizations. High level are optimizations that
can be implemented in the usual programming language while low level are methods like
programming in assembler or with SIMD intrinsics.

High level code optimizations in BQCD include:

75

7. Compute performance tuning

Loop over directions µ. This is always the outer loop. The inner loop runs over lattice
sites. In the very first implementation the forward and backward directions ±µ
were separate loops. Now the is one inner loop per µ.

Projections (1± γµ)ψ(x∓ µ̂). Projections reduce 4-component spinors to 2-component
spinors. Projections can be made before or after the exchange of halo regions.
One can project at all sites or only at process-boundaries. With our choice of
γ-matrices projection in t-direction involves no computation (it is just a selection
of the upper or lower two spinor components).

Overlapping communication and computation. See section 7.4.2

Version Description Availability
with cg version

(see section 7.1)
1 2

1 First version (on Cray T3E). There are seven loops: x-forward,
x-backward, y-forward, y-backward, z-forward, z-backward, t for-
ward and backward

×

2 Four loops (loop fusion of the x, y, z forward/backward loops). × ×
21 Version 2 plus reduction of MPI traffic by projecting at all sites

before the halo exchange.
× ×

25 Version 2 plus reduction of MPI traffic by projecting only at bound-
ary sites sites before the halo exchange (minimal number of pro-
jections)

×

3 Version 2 plus overlapping communication and computation. ×
35 Version 25 plus overlapping communication and computation. ×
100 Version 21 with a customized copy of the gauge field. ×

Table 1: Implementations of the hopping matrix multiplication. The version is specified at
compile time for cg version 1. For cg version 2 it can by chosen at run-time by
setting input parameter tuning cg d.

Descriptions of the implementations of the hopping matrix multiplication are listed in
table 1. Version 2 is the fastest implementation in pure OpenMP mode (single pro-
cess). Version 3 was the fastest implementation for the Hitachi SR8000, with version 21
TFlop/s were sustained on the IBM BlueGene/L and the SGI Altix 4700, and version 100
was even a bit faster. Version 25 (single threaded) is the fastest on Cray XC30/40 and
version 35 on IBM BlueGene/Q (3 or 4 symmetric threads per MPI process).

7.3. Array layout

76

7. Compute performance tuning

7.3.1. Spin-colour arrays

There are two layouts for spin-colour arrays that can be used if tuning cg version is
2:

• tuning cg spincol = 1

complex(8), dimension (4, 3, volume/2 + boundary)

This layout that is also used in the rest of the program.

• tuning cg spincol = 22

complex(8), dimension (2, 3, volume/2 + boundary, 2)

For the set of γ-matrices that is used in BQCD (see appendix A) this layout leads
to minimal overhead in the exchange of boundary values in t-direction: input and
output buffers are both consecutive blocks in memory.

7.3.2. Clover arrays

There are two layouts for clover arrays that can be used if tuning cg version is 2:

• tuning cg clover = 1

A packed format (see the source code, file modules/typedef_clover.F90).

This layout that is also used in the rest of the program.

• tuning cg clover = 2

A packed format that is supposed to be better suited for SIMD (see the
source code, file cg/typedef_cg_clover.F90).

Both formats can be used with SIMD and without.

7.3.3. Array layout for SIMD vectorization

If tuning cg simd is 1 the original array layout

complex(8) :: x(dim1, dim2, (volume/2 + boundary), ...)

is changed to

real(8) :: x(B, re:im, dim1, dim2, (volume/2 + boundary) / B, ...)

where B is the SIMD register width (see appendix D).

77

7. Compute performance tuning

7.4. MPI communication

On the first machine that BQCD was running on in production (Cray T3E) it was
advantageous to exchange boundary values direction by direction. For that machine the
boundary exchange was implemented with MPI_Sendrecv.

7.4.1. Overlapping communications

On later and today machines it is advantageous to exchange all boundaries in an over-
lapping way. This is implemented with MPI_Irecv, MPI_Isend and MPI_Waitall

do n = 1, n_directions

call mpi_irecv(n)

call mpi_isend(n)

enddo

call mpi_waitall(n_directions)

where the full parameter lists of MPI calls are omitted.

This communication pattern is used by default. It can be switched back to MPI_Sendrecv
for the spin-colour boundary exchange if tuning xbound sc i ist set to 0 and for the
gauge field if tuning xbound g i ist set to 0.

7.4.2. Overlapping communication and computation

Overlapping communication and computation is implemented for the boundary exchange
of the spin-colour arrays in the hopping matrix multiplication. The algorithm employed
is a two-stage pipeline:

communicate compute
direction direction

step 1 y x
step 2 z y
step 3 t z
step 4 t

Technically this is implemented by a hybrid parallelization using MPI plus OpenMP. The
main thread calls MPI while the other threads compute. At least 2 OpenMP-Threads
per MPI process are required.

For cg version 1 overlapping communication and computation is implemented in version 3
of the hopping matrix multiplication, for cg version 2 in version 35 of the hopping matrix
multiplication (see table 1).

78

7. Compute performance tuning

7.5. Parallel random numbers

Parallel random number generation is described in section 6.6 (tuning ran field parallel

has to be set to 1).

7.6. I/O

I/O formats are described in section 6.7. Considering performance bqcd is the fastest.
bqcd2 is roughly 30 % slower. Both formats use parallel I/O. ildg is not parallel and
considerably slower. In practice on can use one of the bqcd formats and convert saved
configurations to the ildg format in a second step by using the --convert-to-ildg

command line option (see section 3.2).

7.7. Miscellaneous

There are several experimental input parameters for further performance tuning, which
are listed here for completeness:

tuning cg precision r4

tuning cg precision

tuning cg loop blocking

tuning cg block length

tuning cg mcg block length

tuning io ildg

79

A. γ-matrix definitions

A. γ-matrix definitions

BQCD uses the following set of gamma matrices:

γ1 =


0 0 0 +i
0 0 +i 0
0 −i 0 0
−i 0 0 0



γ2 =


0 0 0 +1
0 0 −1 0
0 −1 0 0

+1 0 0 0



γ3 =


0 0 +i 0
0 0 0 −i
−i 0 0 0

0 +i 0 0



γ4 =


+1 0 0 0

0 +1 0 0
0 0 −1 0
0 0 0 −1



γ5 =


0 0 +1 0
0 0 0 +1

+1 0 0 0
0 +1 0 0



80

B. Preprocessor flags – MYFLAGS

B. Preprocessor flags – MYFLAGS

This appendix we list important preprocessor flags that are set via MYFLAGS in Makefile.var

and Makefile.in. Makefile.var has to be adjusted to new platforms while usually
Makefile.in needs no modification.

B.1. Flags set in Makefile.var

ALIGNMENT VALUE Value in bytes for aligned memory allocation (must fit to
USE_SIMD_* chosen).

CRAY Settings for the Cray compiler.
IBM Settings for the IBM compiler.
GNU Settings for the GNU compiler.
INTEL Settings for the Intel compiler
I TIMES MACRO At many places a statement function i times(z) is used.

It returns z multiplied by the imaginary unit. (No floating
point operations are necessary here.) Because statement
functions are outmoded one can achieve the same by using
a preprocessor macro.

LongLong For C source files: 8 byte integers are long long.
NamesToLower

NamesToLower

NamesToLower

For C source files: set Fortran name mangling scheme,
lower case with no, one or two underscores appended.

OPENMP Is set automatically when compiling C with OpenMP.
Needs to be added for preprocessing Fortran (is now added
to FPP rather than MYFLAGS).

TIMING Switch profiling on (time and performance measurement).
TRACE Switch on tracing (applies to code in the cg directory).
USE MPI WTIME Use MPI Wtime for time measurements.
USE SIMD GENERIC

USE SIMD SSE

USE SIMD AVX

USE SIMD AVX2

USE SIMD QPX

Chose SIMD implementation. GENERIC means plain For-
tran instead of SIMD intrinsics. ALIGNMENT VALUE has to
be set accordingly.

81

B. Preprocessor flags – MYFLAGS

B.2. Flags set in Makefile.in

DOEDEO If not defined (default) the even/odd ordered hopping ma-
trices appear in the preconditioned matrix as DeoDoe and
as DoeDeo.

GAMMA NOTATION BQCD γ-matrices are defined according to appendix A.
GAMMA NOTATION CHROMA

GAMMA NOTATION CHIRAL

GAMMA NOTATION DDHMC

GAMMAC

Alternative conventions for γ-matrices.

OMTDTD If not defined the preconditioned clover improved fermion
matrix reads

M = Tee −DeoT
−1
oo Doe and

M = 1− T−1ee DeoT
−1
oo Doe otherwise.

82

C. Process mapping

C. Process mapping

Process mapping is the mapping of MPI ranks to MPI process coordinates. The func-
tionality is similar to Cartesian topologies in MPI.

The following notation is used:

rank MPI rank
coord() process coordinates
processes() values of processes, see section 3.3.2
process_mapping() values of process mapping, see section 3.3.2

The standard process mapping corresponds to the mapping of the indices of multi-
dimensional array to a single index (expressed in Fortran):

rank = 0

rank = rank * processes(4) + coord(4)

rank = rank * processes(3) + coord(3)

rank = rank * processes(2) + coord(2)

rank = rank * processes(1) + coord(1)

Through process mapping the mapping corresponds to a mapping of permutated in-
dices:

rank = 0

rank = rank * processes(process_mapping(4)) + coord(process_mapping(4))

rank = rank * processes(process_mapping(3)) + coord(process_mapping(3))

rank = rank * processes(process_mapping(2)) + coord(process_mapping(2))

rank = rank * processes(process_mapping(1)) + coord(process_mapping(1))

83

D. SIMD vectorization

D. SIMD vectorization

SIMD stands for single instruction, multiple data. SIMD vectorization is an important
optimization on modern processors. In SIMD processing mode data is being processed
in small groups called SIMD vectors. The vector length is hardware-dependent. In the
following illustration we assume that the SIMD vector length, or the width of a vector
register, is 4. The loop

do i = 1, 100

c(i) = a(i) + b(i)

enddo

can be processed sequentially or SIMD vectorized:

sequential processing
do i = 1, 100

a(i)

b(i)

c(i)

+

=

enddo

SIMD vectorization
do i = 1, 100, 4

a(i)

b(i)

c(i)

a(i+1)

b(i+1)

c(i+1)

a(i+2)

b(i+2)

c(i+2)

a(i+3)

b(i+3)

c(i+3)

+

=

enddo

It is important to note that the multiplication of two Fortran complex numbers is not
SIMD, i.e. it cannot be expressed in a way that corresponds to the illustration given
above. In order to implement SIMD vectorization the structure of complex arrays has
to be changed from standard to, for example, one of the other layouts shown below. In
BQCD the SIMD vectors layout is used (see also section 7.3.3).

• standard – “array of structs”

z(re:im, n)

• vector computers – “struct of arrays”

z(n, re:im)

• SIMD vectors

z(B, re:im, n/B) ︸ ︷︷ ︸
B: width of a SIMD register

84

D. SIMD vectorization

SIMD vectorization can be achieved automatically by compilers or can manually be
implemented by employing intrinsic SIMD functions. A generic implementation must
be independent of the SIMD register width and use only common intrinsics. Common
intrinsics available with Intel and IBM BlueGene compilers are:

intrinsic explanation
(generic name)

load load vector data into a SIMD register
load scalar fill SIMD register with a scalar
store store vector data from a SIMD register

add a(:) + b(:)

sub a(:) - b(:)

mul a(:) * b(:)

div a(:) / b(:)

muladd a(:) * b(:) + c(:)

mulsub a(:) * b(:) - c(:)

85

E. Loop blocking

E. Loop blocking

Loop blocking is an optimization technique for loops. For example,

do i0 = 1, n, 256

i1 = min(i0 + (256-1), n)

do i = 1, n do i = i0, i1

a(i) = b(i) + c(i) a(i) = b(i) + c(i)

enddo enddo

−→
do i = 1, n do i = i0, i1

x(i) = a(i) * y(i) x(i) = a(i) * y(i)

enddo enddo

enddo

where the block length is 256 and it is assumed that mod(n, 256) == 0. The idea of
this optimization is to improve data cache locality (i.e. to have a(i) for the second loop
in the data cache after blocking).

86

References

References

[1] Y. Nakamura and H. Stüben, PoS(Lattice 2010)040.

[2] T.R. Haar, Y. Nakamura and H. Stüben, Poster presentation at Lattice 2017.

[3] E. M. Ilgenfritz, W. Kerler and H. Stüben, Nucl. Phys. Proc. Suppl. 83 (2000) 831,
[arXiv:hep-lat/9908022].

[4] E. M. Ilgenfritz, W. Kerler, M. Müller-Preussker and H. Stüben, Phys. Rev. D 65
(2002) 094506 [arXiv:hep-lat/0111038].

[5] H. Stüben [QCDSF-UKQCD Collaboration], Nucl. Phys. Proc. Suppl. 94 (2001)
273, [arXiv:hep-lat/0011045].

[6] A. Ali Khan, T. Bakeyev, M. Göckeler, R. Horsley, D. Pleiter, P. Rakow, A. Schäfer,
G. Schierholz, H. Stüben [QCDSF Collaboration], Phys. Lett. B 564 (2003) 235
[arXiv:hep-lat/0303026].

[7] A. Ali Khan, T. Bakeyev, M. Göckeler, R. Horsley, D. Pleiter, P.E.L. Rakow,
A. Schäfer, G. Schierholz, H. Stüben [QCDSF Collaboration], Nucl. Phys. Proc.
Suppl. 129 (2004) 853 [arXiv:hep-lat/0309078].

[8] M. Göckeler et al. [QCDSF Collaboration], PoS LAT2007 (2007) 041
[arXiv:0712.3525 [hep-lat]].

[9] N. Cundy et al. [QCDSF-UKQCD Collaborations], PoS LATTICE2008 (2008)
132 [arXiv:0811.2355 [hep-lat]].

[10] N. Cundy et al., Phys. Rev. D 79 (2009) 094507 [arXiv:0901.3302 [hep-lat]].

[11] W. Bietenholz et al. [QCDSF-UKQCD Collaborations], PoS LAT2009 (2009) 102
[arXiv:0910.2963 [hep-lat]].

[12] X.-Y. Jin, Y. Kuramashi, Y. Nakamura, S. Takeda, A. Ukawa, Phys. Rev. D88
(2013) 094508, [arXiv:1307.7205 [hep-lat]] and Phys. Rev. D92 (2015) 114511,
[arXiv:1504.00113 [hep-lat]].

[13] A. J. Chambers et al, Phys. Rev. D90 (2014) 014510, [arXiv:1405.3019 [hep-lat]]
and Phys. Rev. D92 (2015) 114517, [arXiv:1508.06856 [hep-lat]]

[14] R. Horsley et al., JHEP 1604 (2016) 093, [arXiv:1509.00799 [hep-lat]].

[15] W. Kamleh and M. Peardon Comput. Phys. Comm. 183 (2012) 1993
[arXiv:1106.5625 [hep-lat]]

[16] T. Haar, W. Kamleh, J. Zanotti, Y. Nakamura, Comput. Phys. Commun. 215 (2017)
113, [arXiv:1609.02652 [hep-lat]].

[17] G. Schierholz and Y. Nakamura, Talk by G.S. at Lattice 2017.

[18] E. M. Ilgenfritz, W. Kerler, M. Müller-Preussker, A. Sternbeck and H. Stüben,
Phys. Rev. D 69 (2004) 074511, [arXiv:hep-lat/0309057].

87

References

[19] A. Sternbeck, E. M. Ilgenfritz, W. Kerler, M. Müller-Preussker and H. Stüben, Nucl.
Phys. Proc. Suppl. 129 (2004) 898 [arXiv:hep-lat/0309059].

[20] Y. Nakamura et al., AIP Conf. Proc. 756 (2005) 242 [Nucl. Phys. Proc. Suppl. 140
(2005) 535] [arXiv:hep-lat/0409153].

[21] V. G. Bornyakov et al., arXiv:0910.2392 [hep-lat].

[22] H. Baier et al., arXiv:0911.2174 [hep-lat].

[23] G.S. Bali, S. Collins, A. Cox, A. Schäfer, [arXiv:1706.01247v1 [hep-lat]].

[24] X.-Y. Jin, Y. Kuramashi, Y. Nakamura, S. Takeda, A. Ukawa, [arXiv:1706.01178
[hep-lat]].

[25] S. Hollitt, P. Jackson, R. Young, J. Zanotti, PoS(INPC2016) 272.

[26] http://ildg.sasr.edu.au/Plone

[27] K. Symanzik, Nucl. Phys. B226 (1983) 187.

[28] C. Morningstar and M. J. Peardon, Phys. Rev. D69 (2004) 054501 [hep-
lat/0311018].

[29] S. Capitani, S. Dürr and C. Hoelbling, JHEP 0611 (2006) 028 [hep-lat/0607006].

[30] H. Perlt et al. [QCDSF Collaboration], PoS(LATTICE 2007)250 [arXiv:0710.0990].

[31] S. Boinepalli et al., Phys. Lett. B616 (2005) 196 [hep-lat/0405026].

[32] J.M.Zanotti et al., Phys. Rev. D71 (2005) 034510 [hep-lat/0405015].

[33] M. Hasenbusch, Phys. Lett. B519 (2001) 177 [hep-lat/0107019].

[34] M. A. Clark and A. D. Kennedy, Nucl. Phys. Proc. Suppl., 129 (2004) 850 [hep-
lat/0309084].

[35] J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380 (1992) 665.

[36] M. Lüscher, Comput. Phys. Commun. 79 (1994) 100 [arXiv:hep-lat/9309020].

[37] http://luscher.web.cern.ch/luscher/ranlux/index.html

[38] N. Cundy, M. Göckeler, R. Horsley, T. Kaltenbrunner, A. D. Kennedy, Y. Nakamura,
H. Perlt, D. Pleiter, P. E. L. Rakow, A. Schäfer, G. Schierholz, A. Schiller, H. Stüben
and J. M. Zanotti [QCDSF-UKQCD Collaboration] Phys. Rev. D 79 (2009) 094507
[arXiv:0901.3302 [hep-lat]].

[39] T. Chiu, T. Hsieh, C. Huang, and T. Huang, Phys. Rev. D 66 (2002) 114502
[arXiv:hep-lat/0206007].

[40] S. Takeda, Y. Kuramashi, A. Ukawa, Phys. Rev. D 85 (2012) 096008
[arXiv:1111.6363 [hep-lat]].

88

	Preface
	Overview
	Summary of changes

	Installation
	Prerequisites
	lime
	LAPACK and ScaLAPACK

	Download
	License
	Configuration
	Supported platforms
	Settings in Makefile.var
	Configuring/porting SIMD

	Testing

	Usage
	Quickstart guide
	Basics
	Gauge and fermion fields
	Molecular dynamics
	Markov Chain
	Fermion matrix inversion
	Running BQCD
	BQCD output

	Command line
	Flag -c (continuation job)
	Flag –convert-to-ildg
	Flag -I (print default input values)
	Flag -V (print program version)
	Argument input
	Argument output

	Input parameters and the syntax of input file
	General parameters
	Lattice and domain decomposition
	Gauge action
	Fermion action
	Double-flavour pseudofermions
	Single-flavour pseudofermions
	RHMC tuning parameters
	Zolotarev rational approximation
	QED
	Axion
	PFHMC
	Truncated rational HMC (tRHMC)
	Start parameters
	Configuration I/O
	Markov Chain
	Hybrid Monte Carlo
	Integrator specification
	Time scale specifiers
	Solver parameters
	Measurements
	Compute performance tuning
	Miscellaneous

	File naming conventions
	input, output and batch log files
	Restart files in bqcd format
	Restart files in bqcd2 format
	Restart files in lime format
	Configuration files in bqcd format
	Configuration files in bqcd2 format
	Configuration files in ildg format

	Flexible filenames
	Working with data in ILDG format
	Restart files
	SU(3) configuration files and metadata
	Precision
	Example of a complete set of ildg settings

	Output – structure of res(ults) file
	Header section
	ILDG read and write sections
	Monte-Carlo sections (ForceAcceptance, MC, HMCtest)
	Cooling section
	Footer section
	Timing sections
	List of embedded tables

	Measurements
	Topological charge
	Polyakov loop
	Fermionic bulk quantities
	Determinants for phase reweighting at non-zero chemical potential
	fA and fP
	Wilson flow for QCD field
	Wilson flow for QED field

	Physics
	Gauge actions
	Fermionic actions
	Schrödinger functional boundary conditions
	QCD+QED
	Axion
	Observables
	Gluonic observables
	Fermionic observables

	Algorithms
	Multi timescale integration
	Tuning the rational fraction part
	Polynomial filtering
	Double-flavour case
	Single-flavour case

	The generalized multi-scale integration scheme
	Truncated RHMC (tRHMC)
	The Zolotarev optimal rational approximation

	Implementation issues
	Programming language
	Preprocessing
	C preprocessor
	m4 macro preprocessor
	loopp loop preprocessor

	Fortran modules
	Precision
	Parallelisation
	Random numbers
	Saving and reading configurations
	I/O format bqcd
	I/O format bqcd2
	I/O format ildg

	Performance measurements and profiling
	Fermionic boundary conditions
	C interface
	Input parsing

	Compute performance tuning
	Conjugate gradient solvers and SIMD vectorization
	Hopping matrix multiplication
	Array layout
	Spin-colour arrays
	Clover arrays
	Array layout for SIMD vectorization

	MPI communication
	Overlapping communications
	Overlapping communication and computation

	Parallel random numbers
	I/O
	Miscellaneous

	-matrix definitions
	Preprocessor flags – MYFLAGS
	Flags set in Makefile.var
	Flags set in Makefile.in

	Process mapping
	SIMD vectorization
	Loop blocking

