
BQCD Manual

Yoshifumi Nakamura and Hinnerk Stüben

October 2011



Yoshifumi Nakamura
RIKEN Advanced Institute for Computational Science
Kobe, Hyogo 650-0047
Japan

Hinnerk Stüben
Universität Hamburg
Regionales Rechenzentrum
20146 Hamburg
Germany

Copyright c© 2010, 2011 Yoshifumi Nakamura, Hinnerk Stüben

2



Contents

Preface 5

1 Overview 6

1.1 Summary of changes . . . . . . . . . . . . . . . . . . . . . . . 7

2 Installation 8

2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Usage 12

3.1 Command line . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Input parameters and syntax of input file . . . . . . . . . . . 13

3.3 File naming conventions . . . . . . . . . . . . . . . . . . . . . 17

3.4 Working with data in ILDG format . . . . . . . . . . . . . . . 18

3.5 Output – structure of res(ults) file . . . . . . . . . . . . . . . 22

3.6 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Physics 28

4.1 Gauge actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Fermionic actions . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Algorithms 31

5.1 Multi timescale integration . . . . . . . . . . . . . . . . . . . . 31

5.2 Tuning the rational fraction part . . . . . . . . . . . . . . . . 33

6 Implementation issues 34

6.1 Programming language . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3



6.3 Fortran modules . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.5 Parallelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.6 Random numbers . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.7 Saving and reading configurations . . . . . . . . . . . . . . . . 38

6.8 Performance measurements and profiling . . . . . . . . . . . . 38

6.9 Fermionic boundary conditions . . . . . . . . . . . . . . . . . 39

6.10 C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.11 Input parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A γ-matrix definitions 40

B Preprocessor flags – MYFLAGS 41

C Running on Blue Gene/P 43

4



Preface

Berlin quantum chromodynamics program (BQCD) is a Hybrid Monte-Carlo
program for simulating lattice QCD with dynamical Wilson fermions. The
development of BQCD started in 1998 by H.S. for the two flavour case and
the original Wilson action. It was written for a study of parallel tempering
[2, 3] (these roots are still visible at some places). At that time the whole
parallelisation framework was completed.

Two years later the program was extended in two different directions.
The first direction was the implementation of clover O(a) improvement of
the fermionic action. With the availability of clover improvement BQCD
became one of the main production codes of the QCDSF collaboration [4].
The second direction was the addition of an external field to the standard
Wilson action in order to study the Aoki phase [5, 6]. The next milestone
was the implementation of the Hasenbusch trick [7, 8].

Since 2006 the main code development has been made by Y.N. The code
was largely extended and improved to enable simulations including a third
fermion flavour [9, 10, 11, 12].

The code is also being used by the DIK Collaboration for simulations at
finite temperature [13, 14]. Several people took BQCD as a starting point for
adding their own code for measurements. The plan of the QPACE project
[15] to port BQCD to their machine has triggered the publication of the code
as free software under the GNU General Public License. We hope that it will
be useful for others and kindly ask to cite our contribution to the proceedings
of Lattice 2010 [1] in case the code is used to prepare a publication.

June 2010 Yoshifumi Nakamura
Hinnerk Stüben

5



1 Overview

BQCD is a program to generate configurations with clover type action.

Implemented functions for dynamical simulations:

• Nf=2 clover action

• Nf=2+1 clover action

• Improved gauge action

• Fat link clover action with stout link smearing

• with imaginary θ

Implemented functions for tuning:

• RHMC algorithm

• Multi mass Preconditioning

• Multi pseudoscalar Fermions

• Multi time Scale Integration

• Minimal norm integrator (Omelyan)

• Minimum and maximum eigenvalues calculation of M̃ †M̃

• User Assistance for determination u0 on tadpole improvement

Many of these items will only be sketched in this manual. As a starting
point we suggest to look at the test cases we have described in section 2.5
for Nf = 2 and Nf = 2 + 1 simulations.

6



1.1 Summary of changes

• version : 4.0.0 (June 2010)

– first public version

• version : 4.1.0 (October 2011)

– GCRO-DR solver

– replay trick

– Schrödinger functional method to determine cSW

– further RHMC tuning (see section 5.2)

– SSE implementation of the hopping and clover matrix multiplica-
tions (set libd = 103 in Makefile.var)

– Check return value of functions for reading/writing ILDG format

– Minor changes for printing and function interface

7



2 Installation

2.1 Prerequisites

The preferred directories for installing prerequisite packages are

$HOME/opt/package .

Prerequiste directories can be changed in the Makefile.in. It is recom-
mended to use the same compiler for building packages and BQCD.

2.1.1 lime

It can be downloaded from:

http://usqcd.jlab.org/usqcd-software/c-lime/lime-1.3.2.tar.gz

Installation:

cd ~/opt

tar zxvf lime-1.3.2.tar.gz

cd lime-1.3.2

export CC=non-default compiler # optional

export CFLAGS=non-default compiler flags # optional

./configure --prefix=$PWD

make

2.1.2 LAPACK

LAPACK installed personally must be put as

LAPACK = $(HOME)/lib/$(COMPILER)/lapack.a $(HOME)/lib/$(COMPILER)/blas.a

(see Makefile.in)

2.2 Download

The sources of BQCD and this manual can be downloaded from

https://www.rrz.uni-hamburg.de/fileadmin/forschung/bqcd .

8



2.3 License

BQCD is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

BQCD is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with BQCD. If not, see <http://www.gnu.org/licenses/>.

2.4 Configuration

2.4.1 Supported platforms

Platform dependent parts are kept in two files which are symbolic links to
corresponding files in the platform directory

Makefile.var -> platform/Makefile-platform.var

service.F90 -> platform/service-platform.F90

for example:

Makefile.var -> platform/Makefile-gnu.var

service.F90 -> platform/service-gnu.F90

One can prepare working on a particular platform by entering the command

make prep-platform

which creates symbolics links, for example:

make prep-gnu

9



In the platform directory one can find files for machines that were used in
the past but that are not necessarily up-to-date. Currently you can expect
that compilation works in these cases:

altix2 SGI Altix 4700 at LRZ Munich (Intel compiler, MPI from SGI)

gnu GNU compiler, single processor version

hlrn2 SGI ICE at HLRN (Intel compiler, various MPI libraries)

jugene IBM BlueGene/P at JSC Jülich

linux GNU compiler, MPICH/openMPI

2.4.2 Settings in Makefile.var

In Makefile.var one can make the following high level settings:

timing = empty or 1 switch on profiling
mpi = empty or 1 single processor program or MPI
omp = empty or 1 compile with OpenMP
debug = empty or 1 compile with debug flags
libd = 100 which hopping matrix multiplication
random = ranlux-3.2 which random number generator

On platform hlrn2 mpi must not be set to 1 but rather to a word describing
an MPI library: mpt (SGI Massage Passing Toolkit), mpich (MVAPICH2) or
impi (Intel MPI).

When switching on OpenMP for the GNU compiler one should use gfor-
tran version 4.4.1 or higher.

These settings are relevant only on systems that support the shmem com-
munication library:

shmem = empty or 1 use shmem instead of MPI
shmempi = empty or 1 use shmem only in hopping matrix multiplication

Based on theses high level settings low level settings are made. This includes
compiler flags, preprocessor flags and selection of libraries.

The make procedure is sometimes not straightforward. Instead of make

make fast builds the binary. The binary is called bqcd4.

10



2.5 Testing

For testing reference data can be found in directory data. There are test
cases for Nf = 2 and Nf = 2 + 1. Due to rounding differences the output
will not be identical to the reference output but should be very close to the
reference output.

2.5.1 Testing Nf = 2

cd data

../bqcd4 bqcd.200.input bqcd.200.res

diff bqcd.200.output bqcd.200.res

2.5.2 Testing Nf = 2 + 1

cd data

../bqcd4 bqcd.300.input bqcd.300.res

../bqcd4 -c bqcd.300.input bqcd.300.res

diff bqcd.300.output bqcd.300.res

2.5.3 Testing parallel runs

• Set the number of processes to be used for each lattice dimension in
the input file, for example

processes 1 1 2 4

to decompose the z- into 2 domains and the t-direction into 4 domains.

• Run BQCD on the appropriate number on processes, which is 8 in the
above example:

mpirun -np 8 ../bqcd4 bqcd.200.output bqcd.200.res

In principle the output (bqcd.200.res) is identical to the output from
the sequential run (again up to rounding differences). This holds true
for any decomposition.

11



3 Usage

3.1 Command line

BQCD takes the following arguments:

bqcd [-c] [-I] [-V] input [output]

3.1.1 -c – continuation job

If the -c parameter is present the start configuration is being read from file.
Otherwise a start configuration is being generated. The setup is such that
input does not have to be modified from the first to the second job in a job
chain.

3.1.2 -I – print default input

If -I is given the program prints all possible input parameters with their
default values and exits. Most of them are decribed in section 3.2.

3.1.3 -V – print program version

The program prints version information and exits. The output looks like
this:

This is bqcd 3.9.0 (revision 244)

input format: 4

conf info format: 3

MAX_TEMPER: 50

REAL kind: 8

Version of D: 100

Communication: single_pe

RandomNumbers: ranlux-3.2 level 2

3.1.4 input

Name of input parameter file.

12



3.1.5 output

Name of log- and results file. If not given data will be written to stdout. If
the file does not exist it will be created. If -c is not set an existing file will
be overwritten. If it is set new output will be appended to the file.

3.2 Input parameters and syntax of input file

The syntax of the input file is one keyword value(s) pair (or tuple) per line.
Empty lines and lines beginning with a # character are ignored. Keywords
are checked for validity but the number of values and the types of values are
not. It is a good idea to enclose character string parameters in double quotes
"..." (in particular Fortran will scramble filenames containing slashes).

3.2.1 General parameters

run integer from 0 to 999

comment string

3.2.2 Lattice and its decomposition

lattice Lx Ly Lz Lt lattice size
processes Px Py Pz Pt process grid (Li must be divisible by Pi)

boundary_conditions_fermions ±1 ±1 ±1 ±1
boundary_sf 0 if !=0, Schödinger functional boundary for cSW (Pt must be > 1)

3.2.3 Physical parameters

gauge_action WILSON or TREE or IWASAKI or (TREETAD)

fermi_action NON or WILSON or CLOVER or SLW or SLIC or SLRC

beta 0.0 gauge coupling
kappa 0.0 hopping parameter for 2 degenerate fermions
kappa_strange 0.0 hopping parameter for +1 fermion
csw 0.0 coefficient of clover term
n_stout 0 number of stout link smearing steps
alpha 0.0 parameter for stout link smearing
h 0.0 coefficient to break parity-flavour symmetry
theta 0.0 coefficient to break CP symmetry

13



3.2.4 Start parameters

These parameters take only effect if -c (continuation) is not given on the
command line. The start configuration can be cold, hot or be read from file.
The start configuration file can be in bqcd/info format or in ildg/lime
format. The random number generator can be initialised with a default seed
or a user defined seed.

start_configuration cold or hot or file

start_info_file filename.info (if set, do not specify start_ildg_file)

start_ildg_file filename.lime (if set, do not specify start_info_file)

start_random default or integer

3.2.5 Monte-Carlo parameters

mc_total_steps integer total number of trajectories in this run
mc_steps integer number of trajectories per job
mc_save_frequency integer configuration save frequency

A run consists of several jobs. If the trajectory counter is at mc total steps

the program generates a stop file and exits. The stop file is named

progname.run.STOP

for example: bqcd.042.STOP. Configurations are saved if

mod(trajectory_counter, mc_save_frequency) == 0 .

3.2.6 Hybrid Monte-Carlo parameters

hmc_test 0 if !=0 reversibility is checked
hmc_model E or F for 2 or 2+1 flavours
hmc_accept_first 0 this number of trajectories are accepted forcedly
hmc_trajectory_length 1 is twice as long as Chroma’s tau

hmc_integrator1 LPFSTS, LPFTST, 2MNSTS, 2MNTST, 4MN4FP or 4MN5FV

hmc_integrator2 NON or others
hmc_integrator3 NON or others
hmc_integrator4 NON or others

14



hmc_integrator5 NON or others
hmc_integrator6 NON or others
hmc_steps 0 number of steps for first level of integrator
hmc_m_scale 1 inverse time scale ratio to 1 level higher
hmc_m_scale2 1 inverse time scale ratio to 1 level higher
hmc_m_scale3 1 inverse time scale ratio to 1 level higher
hmc_m_scale4 1 inverse time scale ratio to 1 level higher
hmc_m_scale5 1 inverse time scale ratio to 1 level higher
hmc_hkappa 0 way of mass preconditioning

0: M1=M+rho
otherwise: kappa is replaced by rho

hmc_rho 0.0 parameter for mass preconditioning
hmc_rho2 0.0 parameter for mass preconditioning
hmc_rho3 0.0 parameter for mass preconditioning
hmc_rho4 0.0 parameter for mass preconditioning
hmc_mpf_mass 0 number of pseudofermions treated by mass prec.
hmc_dsf1_mtmp 0 time scale level, M1 is integrated
hmc_dsf2_mtmp 0 time scale level, M1/M2 is integrated
hmc_dsf3_mtmp 0 time scale level, M2/M3 is integrated
hmc_dsf4_mtmp 0 time scale level, M3/M4 is integrated
hmc_dsf5_mtmp 0 time scale level, M4/M5 is integrated
hmc_dsd 0 time scale level, LogDetClover is integrated
hmc_dsg 0 time scale level, Plaq of gauge action is integrated
hmc_dsig 0 time scale level, Lect of gauge action is integrated

3.2.7 Rational Hybrid-Monte Carlo parameters

hmc_mpf_rhmc_s 0 number of pseudo-fermions in rational approximation
hmc_dsf_eor 0 time scale level, RationalFractions is integrated

3.2.8 Solver parameters

solver_rest 1e-8 tolerance of solver for action evaluation
solver_rest_md 1e-8 tolerance of solver for molecular dynamics
solver_rest_cg_ritz 1e-8 tolerance of cg˙rtiz to compute eigenvalues
solver_maxiter 100 maximum iteration for solvers
solver_ignore_no_convergence 0 action at when solver reaches max. iter.

2: ignore

15



otherwise: abort
solver_check_solution 0 if !=0, residual is printed
solver_mre_vectors 0 num. of past solutions to get initial guess for CG
solver_stopping_criterion 1 if =0, ||Ax-b||^2<tol

if !=0, |Ax-b|/|b|<tol

solver_outer_solver cg [cg|bicgstab|gmres|cg_mix|

bicgstab_mix|gcrodr]

solver_inner_solver cg [cg|bicgstab]

solver_outer_steps 20 num. of outer solver iterations
solver_gcrodr_numarstep 10 num. of Arnoldi steps when outer solver is gcrodr
solver_gcrodr_numdefvec 5 num. of deflation vectors when outer solver is gcrodr

3.2.9 Measurement switches

measure_cooling_list "" path of file to specify cooling steps
measure_polyakov_loop 0 -th trajectory, is measured
measure_traces 0 -th trajectory, is measured
measure_schrpcac 0 -th trajectory, fA and fP are measured
measure_minmax 0 num. of measured min/max eigenvalues
measure_rhmc_forces 0 if !=0, forces for rational fractions are printed
measurement_only 0 if !=0, HMC is skipped

3.2.10 Tuning parameters

replay_trick_ntau 0 trial ntau
replay_trick_threshold 1.0 if < |dH|, replay
tuning_approx_range 0 if !=0, tune rational approx. (see [24])
tuning_approx_range_list "" path of file for rational approx.
tuning_fraction_tolerance "" path of file for their tolerance

3.2.11 Miscellaneous

ran_ranlux_level 1 or 2

io_restart_format ildg or bqcd

16



3.3 File naming conventions

File names have these components (see examples given below):

progname.run

progname.run.extension

progname.run.trajectory.extension

progname.run.ensemble.trajectory.timeslice.extension

progname.run.ensemble.ensemble2.trajectory.timeslice.extension

By default the value of progname is bqcd (can be changed in modules/mod-

ule bqcd.F90). run is a three digit run number that is set in the input file.
Its value cannot be changed in a job chain (there is a consistency check).
trajectory is a five digit trajectory counter. timeslice is a two digit time
coordinate of a time slice (it will be extended automatically to three digits
if Lt > 99).

ensemble and ensemble2 are single digit values of the ensemble index in
parallel tempering simulations. Without tempering both values are 1.

3.3.1 input, output and batch log files

These file names are not automatically being generated by the program. We
choose names that fit to the naming scheme:

bqcd.042 input (command line parameter)
bqcd.042.res output (command line parameter)
bqcd.042.log log file from batch system

3.3.2 Restart files in bqcd format

bqcd.042.count counters: run, job, trajectory

bqcd.042.pinfo plaquette info
bqcd.042.ran state of random number generator
bqcd.042.1.info configuration metadata
bqcd.042.1.00.u timeslice 0 of SU(3) configuration
bqcd.042.1.01.u . . .
bqcd.042.1.02.u

bqcd.042.1.03.u

17



3.3.3 Configuration files in bqcd format

bqcd.042.1.1.00015.info configuration metadata
bqcd.042.1.1.00015.00.u configuration at trajectory 15, timeslice 0
bqcd.042.1.1.00015.01.u . . .
bqcd.042.1.1.00015.02.u

bqcd.042.1.1.00015.03.u

The format of these files is identical to the format of bqcd restart files.

3.3.4 Restart files in ildg format

bqcd.042.count counters: run, job, trajectory

bqcd.042.pinfo plaquette info
bqcd.042.ran state of random number generator
bqcd.042.lime configuration

count, pinfo and ran files are the same as in bqcd format. The lime file
contains additional data for consistency checks. This information is not con-
tained in ildg configuration files.

3.3.5 Configuration files in ildg format

bqcd.042.xml ensemble metadata
bqcd.042.00010.xml metadata of configuration at trajectory 10
bqcd.042.00010.lime binary data of configuration at trajectory 10

3.4 Working with data in ILDG format

3.4.1 Restart files

By default the program works with restart files in its own bqcd format. To
work with restart files in ildg format one has to set

io_restart_format ildg

in the input parameter file.

18



3.4.2 SU(3) configuration files and metadata

In order to work with the ildg data format one has to set:

io_conf_format ildg

The program will then write binary data in lime format as well as ensemble
and configuration metadata. Currently lime I/O is sequential (the bqcd

format allows for parallel I/O).

Generation of metadata works with templates. On has to provide template
files containing placeholders. The syntax for placeholders is #placeholder#,
for example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<gaugeConfiguration xmlns="http://www.lqcd.org/ildg/QCDml/config1.3">

<management>

<crcCheckSum>#crc_check_sum#</crcCheckSum>

<archiveHistory>

<elem>

<revisionAction>generate</revisionAction>

<participant>

<name>#participant_name#</name>

<institution>#participant_institution#</institution>

</participant>

<date>#today#</date>

</elem>

</archiveHistory>

</management>

...

The following placeholders are available:

#participant_name#

#participant_institution#

#machine_name#

#machine_institution#

#machine_type#

#code_name#

19



#code_version#

#code_date#

#para_number_steps#

#para_step_size#

#para_time_scale_ratio#

#para_solver_residuum#

#para_rho#

#markov_chain_uri#

#markov_series#

#markov_update#

#Lx#

#Ly#

#Lz#

#Lt#

#beta#

#kappa#

#csw#

#today#

#average_plaquette#

#precision#

#crc_check_sum#

#data_lfn#

Placeholders are defined in ildg/ildg meta.h. Some placeholders can be
determined from the normal input, for others there are special input param-
eters:

ildg_markov_chain_uri "mc://UNDEFINED"

ildg_data_lfn_path "lfn://UNDEFINED"

ildg_participant_name "UNDEFINED"

ildg_participant_institution "UNDEFINED"

ildg_machine_name "UNDEFINED"

ildg_machine_institution "UNDEFINED"

ildg_machine_type "UNDEFINED"

In any case file names for the templates have to be given:

ildg_template_ensemble "ensemble_template.xml"

ildg_template_conf "config_template.xml"

20



One can also set prefix and extension of the ildg files:

ildg_filename_prefix "qcdsf"

ildg_filename_extension "lime"

This setting would, for example, generate these configuration files:

qcdsf.042.xml

qcdsf.042.00010.xml

qcdsf.042.00010.lime

3.4.3 Precision

The program can handle ildg files in 32- and 64-bit precision. When reading
the precision is taken from the ildg file. The precision of writing can be set
to 32-bit by:

ildg_precision 32 SU(3) configurations
ildg_precision_restart 32 restart files (for testing)

3.4.4 Example of a complete set of ildg settings

io_conf_format "ildg"

ildg_filename_prefix "qcdsf"

ildg_filename_extension "lime"

ildg_precision 64

ildg_template_ensemble "../data/qcdsf-ensemble-05.xml"

ildg_template_conf "../data/qcdsf-configuration-04.xml"

ildg_markov_chain_uri "mc://ldg/qcdsf/clover_nf2/b5p00kp13000-04x04"

ildg_data_lfn_path "lfn://ldg/qcdsf/clover_nf2/b5p00kp13000-04x04"

ildg_participant_name "Hinnerk Stueben"

ildg_participant_institution "ZIB"

ildg_machine_name "HLRN-II"

ildg_machine_institution "HLRN"

ildg_machine_type "SGI ICE 8200"

21



3.5 Output – structure of res(ults) file

The output was structured in such a way that it is humanly readable and
can be easily processed with awk. As a consequence each line begins with
a keyword which is followed by data. In addition there are sections. The
sections are:

>BeginJob

>BeginHeader

>EndHeader

>BeginILDGread

>EndILDGread

>BeginForceAcceptance

>EndForceAcceptance

>BeginMC

>BeginILDGwrite

>EndILDGwrite

>BeginCooling

>EndCooling

>EndMC

>BeginHMCtest

>EndHMCtest

>BeginILDGwrite

>EndILDGwrite

>BeginFooter

>BeginTiming

>EndTiming

>Begintiming2

>Endtiming2

>EndFooter

>EndJob

22



The Monte-Carlo sections contain tables embedded. A single table can be
extracted from the output using grep or awk, For example:

$ grep %mc bqcd.032.res

T%mc traj e f PlaqEnergy exp(-Delta_H) Acc CGcalls CGitTot CGitMax

%mc 1 1 1 0.4546852837 0.9239828462 0 11 381 37

%mc 2 1 1 0.4743147510 0.6786574618 1 11 360 34

%mc 3 1 1 0.4725616177 1.1718570939 1 11 369 34

%mc 4 1 1 0.4716513122 1.0527896694 1 11 390 36

%mc 5 1 1 0.4607034796 1.0829331352 1 11 385 35

%mc 6 1 1 0.4705402342 0.8272890510 1 11 386 36

%mc 7 1 1 0.4808335455 1.0465054341 1 11 386 36

%mc 8 1 1 0.4808963557 1.2053582280 1 11 390 36

%mc 9 1 1 0.4808963557 0.7580344698 0 11 417 39

%mc 10 1 1 0.4820214435 0.8795287474 1 11 403 38

If one is interested in the values only (without the table header)

$ awk ’$1 == "%mc"’ bqcd.032.res

does the job. The general format of a table is:

key trajectory_counter value(s)

Tables introduced at an early stage contain ensemble indices e and f in
addition. This is because a measurement can always belong to two ensembles
when working with parallel tempering.

3.5.1 Header section

The header section contains compile (e.g. program version), input (from
parameter file) and runtime (e.g. date) parameters. For historic reasons the
keywords used for parameters are different from the input file (previous input
files only used positional parameters). Another pecularity are _1 endings.
This ending indicates the ensemble index (what is only necessary for parallel
tempering).

23



3.5.2 ILDG read and write sections

The ILDG sections contain information about the file being read or written,
e.g. the filename and the ILDG logical filename (LFN). If a restart file
is written in ILDG format the LFN line contains other data, namely the
filename, its CRC check-sum, its size in bytes, run-, job- and trajectory
counters.

3.5.3 Monte-Carlo sections (ForceAcceptance, MC, HMCtest)

ForceAcceptance reports on trajectories that were generated without accep-
tance test which is sometimes needed at the beginning of a simulation.

MC reports on usual Hybrid Monte-Carlo trajectories including optional
measurements when a new trajectory is finished.

HMCtest reports on a reversibility test. One trajectory is integrated for-
ward and backward. Afterwards energies and fields are compared.

3.5.4 Cooling section

This section contains a cooling history with the measurement of the topolog-
ical charge.

3.5.5 Footer section

In the footer one finds the end of execution date, the elapsed run time and
how many CPUs were used (#CPUs = #cores = MPI processes × OpenMP
threads).

3.5.6 Timing sections

Output from profiling. Results are shown in a table that list how often a
region was called and how much time was spent in that region:

Performance

region #calls time mean min max Total

s Mflop/s Mflop/s Mflop/s Gflop/s

24



For the most interesting regions the number of floating point were counted.
In these cases the table lists the average, minimal and maximal performance
per CPU (core) as well as the overall performance.

25



3.5.7 List of embedded tables

key meaning

%fa forced acceptance logs

%mc main Hybrid Monte-Carlo logs

%pr rectangular plaquettes

%Hold energies at start of trajectory

%Hnew energies at end of trajectory

%Hdif energy differences (∆H)

%Favg average forces in molecular dynamics integration

%Fmax maximal forces in molecular dynamics integration

%Frat force ratios: maximal forces / minimal forces

%Frac forces in RHMC molecular dynamics integration

%Qc topological charge from cooling (cooling history)

%pl Polyakov loop

%tr fermionic bulk quantities (traces)

%it counters of cg iterations

%it4 counters of cg32 bit iterations

%cgChk check of cg solution

%bicgstabChk check of Bicgstab solution

%bicgstabmixChk check of mixed precision Bicgstab solution

%cg_ritz check of Ritz cg solution

%cg_ritz_dd check of Ritz cg solution

%shift check of multi shift solutions

%egnv eigenvalues

26



3.6 Measurements

Measurements are made at the end of every trajectory. Traces are measured
if

measure_traces > 0 .and. mod(trajectory_counter, measure_traces) == 0 .

3.6.1 Topological charge

To measure the topological charge with the cooling method a file must be
provided in which the cooling steps are defined. One has to set

measure_cooling_list "filename"

in the input file. The file contains the coolings steps after which the topo-
logical charge and the plaquette are measured. For example,

1

2

5

10

20

In this case 20 cooling iterations are made and measurements are performed
after cooling iteration 1, 2, 5, 10 and 20. The corresponding output looks
like this:

>BeginCooling

T%Qc traj e f i_cool Q_cool PlaqEnergy

%Qc 1 1 1 1 -0.137916 0.3552673573

%Qc 1 1 1 2 -0.347026 0.1878487312

%Qc 1 1 1 5 -0.650364 0.0555456917

%Qc 1 1 1 10 -0.533735 0.0181235629

%Qc 1 1 1 20 0.000154 0.0051610597

>EndCooling

27



3.6.2 Polyakov loop

To measure the Polyakov loop set

measure_polyakov_loop 1

in the input file.

3.6.3 Fermionic bulk quantities

To measure fermionic bulk quantities set

measure_traces 1

in the input file.

3.6.4 fA and fP

To measure fA and fP for non-perturbative determination of cSW

measure_schrpcac 2

in the input file.

The corresponding output, fAfPhist, looks like this:

traj t+1 fA(t) fP(t) fA’(T-t) fP’(T-t)

2 2 -0.10939226E+02 0.32266553E+02 -0.56909470E+01 0.17781391E+02

2 3 -0.34826553E+01 0.87987951E+01 -0.19998378E+01 0.40562673E+01

2 4 -0.10307930E+01 0.19997526E+01 -0.87475663E+00 0.11811545E+01

4 2 -0.10427659E+02 0.36927566E+02 -0.57629684E+01 0.18859736E+02

4 3 -0.49157290E+01 0.13352503E+02 -0.31013816E+01 0.54608054E+01

4 4 -0.19897425E+01 0.38296835E+01 -0.18940843E+01 0.23258797E+01

4 Physics

4.1 Gauge actions

The gauge action can be:

28



• the Wilson action

S = SWilson
G =

∑
plaquette

1

3
Re Tr (1− Uplaquette) (1)

• an improved gauge action

SG =
6

g2

[
c0

∑
plaquette

1

3
Re Tr (1− Uplaquette) + c1

∑
rectangle

1

3
Re Tr (1− Urectangle)

]
,

(2)
with c0 + 8c1 = 1. Note that β = 10/g2, if one sets

gauge_action TREE .

4.2 Fermionic actions

The fermionic action can be:

• the Wilson action

SWilson
F =

∑
x

{
ψ̄(x)ψ(x)− κ

[
ψ̄(x)U †µ(x− µ̂)(1 + γµ) + ψ̄(x)Uµ(x)(1− γµ)

]}
(3)

• the Wilson action plus an explicitly parity-flavour symmetry breaking
source term, where τ 3 is the third Pauli matrix

SF = SWilson
F + h

∑
x

ψ̄(x)iγ5τ
3ψ(x) (4)

• the clover O(a) improved Wilson action

SF = SWilson
F − i

2
κ cSW

∑
x

ψ̄(x)σµνFµν(x)ψ(x) (5)

29



• the clover O(a) improved Wilson action + CP breaking term

SF = SWilson
F − i

2
κ cSW

∑
x

ψ̄(x)σµνFµν(x)ψ(x) + θψ̄(x)γ5ψ(x) (6)

• fat link fermions

SF =
∑
x

{
ψ̄(x)ψ(x)− κ ψ̄(x)U †µ(x− µ̂)[1 + γµ]ψ(x− µ̂)

− κ ψ̄(x)Uµ(x)[1− γµ]ψ(x+ µ̂) +
i

2
κ cSW ψ̄(x)σµνFµν(x)ψ(x)

}
,

(7)

where the gauge links Uµ are replaced by stout links [18]

Uµ → Ũµ(x) = eiQµ(x) Uµ(x) , (8)

with

Qµ(x) =
α

2i

[
Vµ(x)U †µ(x)− Uµ(x)V †µ (x)− 1

3
Tr
(
Vµ(x)U †µ(x)− Uµ(x)V †µ (x)

)]
,

(9)
where Vµ(x) is the sum over all staples associated with the link. For
SLiNC fermions,

fermi_action SLRC

csw 2.65 see [11]
n_stout 1

alpha 0.1

4.3 Observables

4.3.1 Gluonic observables

The following gluonic observables can be measured:

• Average plaquette and average rectangular plaquette (both overall,
space-like and time-like).

30



• Topological charge. The topological charge is measured with the field
theoretic method after cooling the gauge field configuration.

• Polyakov loop.

4.3.2 Fermionic observables

Some fermionic bulk quantities can be measured (from stochastic estimators):

〈ψ̄ψ〉 =
1

12V
〈Tr(M−1)〉 (’chiral condensate’)

〈ψ̄γ5ψ〉 =
1

12V
〈Tr(γ5M

−1)〉

〈Π2〉 =
1

12V
〈Tr(M †M)−1〉 (’pion norm’)

5 Algorithms

5.1 Multi timescale integration

In order to explain multi timescale integration we look at the partition func-
tion for Nf=2+1 improved Wilson fermions

Z =

∫
DUDψ̄Dψe−S ,

S = Sg(β) + Sl(κl, cSW) + Ss(κs, cSW) ,

(10)

where Sg is a gluonic action, Sl is an action for the degenerate u- and d-quarks
and Ss is an action for the strange quark. After integrating out fermions

S = Sg(β)− ln[detM †
lMl][detM †

sMs]
1
2 . (11)

We first apply even-odd preconditioning:

detM †
lMl ∝ det(1+T loo)

2 detQ†lQl , [detM †
sMs]

1
2 ∝ det(1+T soo)[detQ†sQs]

1
2 ,

(12)
where

Q = (1 + T )ee −Meo(1 + T )−1ooMoe , T =
i

2
cSW κσµνFµν . (13)

31



We then separate detQ†lQl following Hasenbusch [23]

detQ†lQl = detW †
l Wl det

Q†lQl

WlW
†
l

, W = Q+ ρ . (14)

Finally we modify the standard action to

S = Sg + Sldet + Ssdet + Slf1 + Slf2 + Ssfr , (15)

where

Sldet = −2 Tr log[1 + Too(κ
l)] , Ssdet = −Tr log[1 + Too(κ

s)] ,

Slf1 = φ†1[W (κl)†W (κl)]−1φ1 , Slf2 = φ†2W (κl)[Q(κl)†Q(κl)]−1W (κl)†φ2 ,

Ssfr =
n∑
i=1

φ†2+i[Q(κs)†Q(κs)]−
1
2nφ2+i .

(16)

We calculate Sfr using the RHMC algorithm [24] with optimised values for
n and the number of fractions. We now split each term of the action into
one ultraviolet and two infrared parts,

SUV = Sg , SIR−1 = Sldet + Ssdet + Slf1 , SIR−2 = Slf2 + Ssfr . (17)

In [7] we have introduced two different time scales [25] for the ultraviolet and
infrared parts of the action in the leap-frog integrator. Here we shall go a
step further and put SUV, SIR−1 and SIR−2 on three separate time scales,

V (τ) =
[
VIR−2

(
δτ

2

)
Am1 VIR−2

(
δτ

2

)]nτ
,

A = VIR−1

(
δτ

2m1

)
Bm2 VIR−1

(
δτ

2m1

)
,

B = VUV

(
δτ

2m1m2

)
VQ

(
δτ

m1m2

)
VUV

(
δτ

2m1m2

)
,

(18)

where nτ = τ/(δτ) and the V s are evolution operators of the Hamiltonian.
The length of the trajectory τ is taken to be equal to one in our simulations.

32



5.2 Tuning the rational fraction part

BQCD is able to avoid generating coefficients for the rational approximation
every time. Specific sets of coefficients are implemented in advance (see code
in fermi/rhmc). If the approximation range of generated coefficients is wider
than the condition number of X, BQCD automatically shifts as follows, when
range does not cover actual [min, max] of X

Xα = β−α(βX)α

≈ β−α
[
c0 +

∑
i=1

ci
βX + di

] (19)

where β is the inverse of the minimum eigenvalue of X and ci, di is gener-
ated by Remez algorithm with range for one to the condition number of X,
[1, C(X)].

BQCD also supports to tune the rational approximation by given range
and approximation degree in a file

tuning_approx_range_list "rangelist"

Example rangelist file:

1 11 15 2

2 10 14 2

1st column is ID for rational approximation. It starts from 1 and is consistent
with rid in check para region printed to stderr. 2nd column is degree
of approximation used to approximate 1/X−n which is used at MD steps.
3rd column is degree of approximation used to approximate 1/X−2n and
1/X+2n which are used at action calculation. 4th column is a margin factor
of appoximation range.

To relax the solver tolerance one can specify

tuning_fraction_tolerance "fractiontolerance"

33



Example fractiontolerance file:

0.0011

0.55

2.2

0.11

In this case, toleraces for 1st, 2nd, 3rd and 4th shift are relaxed by factors
of 2000, 4, 1 and 20. This tuning works only if

tuning_approx_range !=0

and BQCD is compiled with FMLIB.

6 Implementation issues

In this section we explain why things in BQCD are the way they are.

6.1 Programming language

BQCD is mainly written in Fortran. The reasons for this decision were
the following. First of all the programmer was a Fortran programmer. C
was not chosen because it was not plausible to write a program that used
complex arithmetic almost throughout in a language that had no support for
that (or better to say only had added complex arithmetic recently). C++ was
considered but the feeling was that at least a first implementation would have
been completed before it would be understood how to use C++ effectively.

The main disadvantages of this decision became visible when the program
became more and more complex. Fortran90 eventually supported dynamical
memory management but there was no support for dynamical algorithms,
i.e., there were no function pointers (which became available in Fortran2003,
but still it is not clear which parts of Fortran2003 are supported by various
compilers). The second disadvantage is that working with classes instead of
arrays would offer new possibilities like introducing different orderings of the
lattice sites which is an interesting optimisation option (of course this can be
done in the current approach but the program will become less readable).

One design goal was to write readable code. We have to leave to the
reader to check how well this was achieved.

34



6.2 Preprocessing

6.2.1 C preprocessor

The C preprocessor was employed from the beginning. It is used for condi-
tional compilation and for macro processing. By convention all BQCD source
files have the suffix .F90. The suffix of the preprocessed file is .f90. In some
cases several .f90 files are being generated from a .F90 file. The .f90 file
are being compiled. They are always kept such that one can always check
the result of preprocessing.

Macro names are all uppercase (sometimes mixed case). Fortran code is
always lowercase.

There are macros with and without arguments. Macros without argu-
ments are used for defining constants and datatypes. The motivation for this
was mainly readability (and aesthetics we have to admit), compare ’BQCD
style’

# include "defs.h"

GAUGE_FIELD :: u

COMPLEX :: x, y

...

x = TWO * y + u(...)

with a pure Fortran style:

use defs

type(gauge_field) :: u

complex(rkind) :: x, y

...

x = const%two * y + u%u(...)

Macros with arguments are used as tools, e.g. the ASSERT and ALLOCATE

macros and for simplifying programming. When marcos are used for the
latter purpose it is a good idea to look at the .F90 and the generated .f90

files when studying the source code.

35



Over the years C preprocessors became more picky. For example, the
GNU preprocessor now refuses to process general Fortran90 code. In some
situations C preprocessors complain about the Fortran % character (which is a
separator in Fortran but an operator in C) and the dots in Fortran operators
like .or. (because dots are separators in C).

6.2.2 m4 macro preprocessor

The m4 macro processor is also used. In this case there are two preprocessing
steps: first a .F90 file is generated and then a .f90 file.

6.3 Fortran modules

Modules are used for storing global data, type definitions and a few interface
definitions. Global data is always readonly except for its initialisation (there
are a few exceptions to this rule). In general modules do not contain functions
or subroutines. The idea behind this is that it should always be possible to
call functions or subroutines from C/C++ if it should become necessary to
do so. Modules that are only used within the same file are put into that
file. Modules that are used by more than one file are put into the modules

subdirectory.

6.4 Precision

Also from the beginning it was foreseen that one might be interested in
multi-precision code. In principle one can compile any version of BQCD
using single precision arithmetic if one defines:

#define RKIND 4

#define BQCD_REAL mpi_real4

This feature was used much later to generate multi-precision code. The recipe
is the following.

• The original source file, foo.F90 say, is compiled as usual with double
precision arithmetic.

36



• A single precision version foo_r4.F90 is generated. It contains only
four lines:

#define PRECISION_R4

#include "defs.h"

#include "defs_r4.h"

#include "foo.F90"

• defs_r4.h contains macros for renaming all subroutines and functions,
e.g.:

#define fun1 fun1_r4

#define fun2 fun2_r4

Again there is also a Fortran way of handling the multi-precision problem.
One can use interfaces and overloading (see su3sc/module_sc.F90).

6.5 Parallelisation

The early versions of BQCD were parallelised by using the shmem library
from Cray. Later an MPI version was added and also a single processor
version that can be compiled without any message passing library. Currently
only the MPI and single processor version work (the routines using shmem are
still contained in the distribution). All files that use calls to message passing
routines are located in directory comm. Which message passing library to use
can be selected in Makefile.var.

BQCD is parallelised with OpenMP in addition. On the Hitachi SR8000
this lead to great performance by overlapping communication and computa-
tion. In order to facilitate OpenMP programming, BQCD routines contain
typically only one loop. It is then straightforward to add OpenMP private
and reduction declarations: the candidates can be found in the type decla-
rations of the routine (implicit none is used throughout).

The parallel design is such that results are independent of the numbers
of processes used. This is true up to rounding errors introduced by global
summations. In a job chain one can change the number of processes in every
job. This feature was implemented, of course, in order to be able to adapt
to changing job mixes at computer centres.

37



6.6 Random numbers

The first random number generator used was ranf by Cray because it has the
ability to jump to an arbitrary position in the sequence of random numbers
and this operation is not much more expensive than generating the next
random number. This skipping of random numbers was reversely engineered
such that it was also available on other computers. Skipping is used to
generate distributed random numbers in such a way that results become
independent of the number of processes.

For running production ranlux [26, 27] is the recommended random num-
ber generator. Currently the same skipping mechanism as for ranf is used.
As a consequence generation of random numbers is not parallelised (random
numbers do have to be communicated, but every process generates all ran-
dom numbers, it only picks the ones that belong to its local lattice). Up to
now this is not a severe restriction in practice but random number generation
with ranlux should become truly parallel in future.

6.7 Saving and reading configurations

BQCD’s file format for configuration was designed to enable simple parallel
I/O. Metadata are kept separate (.info files) from binary data (.u files).
To enable parallel I/O one binary file is written for each timeslice. Again
the design is such that everything works on any number of processes. All
binary data is written to disk in big endian format. BQCD automatically
converts to little endian if necessary. Only two columns of SU(3) matrices
are stored. Checksums are calculated on the fly and added to the metadata.
The checksums can be verified with standard cksum command.

Internally BQCD differentiates between restart files and files that are sup-
posed to be saved. However, the file structures are the same.

Alternatively lime files can be written conforming to the ILDG standard
[16]. Restart files are always written in 64 bit precision. Configurations can
also be saved in 32 bit precision. This kind of I/O is not parallelised.

6.8 Performance measurements and profiling

A simple profiling mechanism was built in. It can be switched on by defin-
ing the TIMING macro. If it is switched off there is no overhead. In the

38



most important routines operations were counted manually in order to get
performance figures.

6.9 Fermionic boundary conditions

BQCD started with having only one copy of the gauge field. Fermionic
boundary conditions were imposed by multiplying SU(3) links with -1 accord-
ingly. Flipping boundary conditions between gluonic and fermionic is han-
dled by subroutine flip_bc(). It has to be called before and after fermionic
operations.

One can optimise the hopping matrix multiplication by introducing a copy
of the gauge field that has an optimised storage ordering. This copy then
has fermionic boundary conditions (and might also include factors 2 from the
(1± γ4) projection).

6.10 C interface

C routines have to be called here and there. Examples are checksum calcu-
lations, ranlux random numbers and I/O of lime files. The Fortran name
mangling scheme is selected by defining NamesToLower, NamesToLOwer_ or
NamesToLower__, respectively.

6.11 Input parsing

The input parser checks whether keywords are known but does not check
the rest of the line! It is easy to add a new keyword. New keywords
can be introduced by adding them to modules/module_input.h. A simi-
lar mechanism was used to introduce placeholders for ILDG metadata files
(see ildg/ildg_meta.F90).

39



A γ-matrix definitions

γ1 =


0 0 0 +i

0 0 +i 0

0 −i 0 0

−i 0 0 0



γ2 =


0 0 0 +1

0 0 −1 0

0 −1 0 0

+1 0 0 0



γ3 =


0 0 +i 0

0 0 0 −i

−i 0 0 0

0 +i 0 0



γ4 =


+1 0 0 0

0 +1 0 0

0 0 −1 0

0 0 0 −1



γ5 =


0 0 +1 0

0 0 0 +1

+1 0 0 0

0 +1 0 0



40



B Preprocessor flags – MYFLAGS

This appendix we list preprocessor flags that are set via MYFLAGS in the
Makefiles.

ALTIX

Settings for SGI Altix, in particular for the shmem communication library.

ARPACK

Settings for ARPACK.

BAGEL

Use Bagel code for the hopping matrix multiplication.

CRAY

Settings for the Cray compiler.

DOEDEO

If not defined (default) the even/odd ordered hopping matrices appear in the
preconditioned matrix as DeoDoe and as DoeDeo.

GAMMA NOTATION CHROMA, GAMMA NOTATION CHIRAL, GAMMA NOTATION DDHMC,
GAMMAC

Alternative conventions for γ-matrices.

IBM

Additions for IBM, in particular data alignment on Blue Gene.

INTEL

Settings for the Intel compiler.

41



I TIMES MACRO

At many places a statement function i times(z) is used. It returns z mul-
tiplied by the imaginary unit. (No floating point operations are necessary
here.) Because statement functions are outmoded one can achieve the same
by using a preprocessor macro.

LAPACK

Settings for LAPACK.

LIBDI

Use improved libd (often fastest Fortran hopping matrix multiplication).

LongLong

For C source files: 8 byte integers are long long.

MPI 1

Replace some calls to MPI-2 routines by equivalent calls to MPI-1 routines.
(Necessary for older versions of the SGI Message Passing Toolkit).

NamesToLower, NamesToLower , NamesToLower

For C source files: set Fortran name mangling scheme, lower case with no,
one or two underscores appended.

OMTDTD

If not defined the preconditioned clover improved fermion matrix reads M =
Tee −DeoT

−1
oo Doe and M = 1− T−1ee DeoT

−1
oo Doe otherwise.

PATHSCALE

Settings for the PathScale compiler.

42



TIMING

Switch profiling on (time and performance measurement).

OPENMP

This is the standard C preprocessor variable that is set when compiling with
OpenMP enabled. However, it has to be defined explicitly here, because
preprocessing and compilation are two separate steps.

C Running on Blue Gene/P

For Blue Gene/P a very fast assembler version of the hopping matrix multi-
plication was implemented by Thomas Streuer. To use it, one has to set

libd = 520

in Makefile.var. In addition the following arguments must be given to
mpirun:

mpirun -np ... -mode VN \

-mapfile XYZT \

-env DCMF_INJCOUNTER=7 \

-env DCMF_RECCOUNTER=7 \

...

On Blue Gene/P BQCD decomposes the lattices automatically according
to the physical dimension of the torus network. The input parameters
processes and process mapping are being ignored.

The assembler code requires that there is a torus network, i.e. one has to
work at least on a midplane. For testing on small lattices one has to chose
another version of the hopping parameter multiplication. In any case the
same automatic lattice decomposition will occur.

43



References

[1] Y. Nakamura and H. Stüben, PoS(Lattice 2010)040.

[2] E. M. Ilgenfritz, W. Kerler and H. Stüben, Nucl. Phys. Proc. Suppl. 83
(2000) 831, [arXiv:hep-lat/9908022].

[3] E. M. Ilgenfritz, W. Kerler, M. Müller-Preussker and H. Stüben, Phys.
Rev. D 65 (2002) 094506 [arXiv:hep-lat/0111038].

[4] H. Stüben [QCDSF-UKQCD Collaboration], Nucl. Phys. Proc. Suppl.
94 (2001) 273, [arXiv:hep-lat/0011045].

[5] E. M. Ilgenfritz, W. Kerler, M. Müller-Preussker, A. Sternbeck and
H. Stüben, Phys. Rev. D 69 (2004) 074511, [arXiv:hep-lat/0309057].

[6] A. Sternbeck, E. M. Ilgenfritz, W. Kerler, M. Müller-Preussker and
H. Stüben, Nucl. Phys. Proc. Suppl. 129 (2004) 898 [arXiv:hep-
lat/0309059].

[7] A. Ali Khan, T. Bakeyev, M. Göckeler, R. Horsley, D. Pleiter, P. Rakow,
A. Schäfer, G. Schierholz, H. Stüben [QCDSF Collaboration], Phys.
Lett. B 564 (2003) 235 [arXiv:hep-lat/0303026].

[8] A. Ali Khan, T. Bakeyev, M. Göckeler, R. Horsley, D. Pleiter,
P.E.L. Rakow, A. Schäfer, G. Schierholz, H. Stüben [QCDSF Collabora-
tion], Nucl. Phys. Proc. Suppl. 129 (2004) 853 [arXiv:hep-lat/0309078].

[9] M. Göckeler et al. [QCDSF Collaboration], PoS LAT2007 (2007) 041
[arXiv:0712.3525 [hep-lat]].

[10] N. Cundy et al. [QCDSF-UKQCD Collaborations], PoS LAT-
TICE2008 (2008) 132 [arXiv:0811.2355 [hep-lat]].

[11] N. Cundy et al., Phys. Rev. D 79 (2009) 094507 [arXiv:0901.3302 [hep-
lat]].

[12] W. Bietenholz et al. [QCDSF-UKQCD Collaborations], PoS LAT2009
(2009) 102 [arXiv:0910.2963 [hep-lat]].

[13] Y. Nakamura et al., AIP Conf. Proc. 756 (2005) 242 [Nucl. Phys. Proc.
Suppl. 140 (2005) 535] [arXiv:hep-lat/0409153].

44



[14] V. G. Bornyakov et al., arXiv:0910.2392 [hep-lat].

[15] H. Baier et al., arXiv:0911.2174 [hep-lat].

[16] http://ildg.sasr.edu.au/Plone

[17] K. Symanzik, Nucl. Phys. B226 (1983) 187.

[18] C. Morningstar and M. J. Peardon, Phys. Rev. D69 (2004) 054501
[hep-lat/0311018].

[19] S. Capitani, S. Dürr and C. Hoelbling, JHEP 0611 (2006) 028 [hep-
lat/0607006].

[20] H. Perlt et al. [QCDSF Collaboration], PoS(LATTICE 2007)250
[arXiv:0710.0990].

[21] S. Boinepalli et al., Phys. Lett. B616 (2005) 196 [hep-lat/0405026].

[22] J.M.Zanotti et al., Phys. Rev. D71 (2005) 034510 [hep-lat/0405015].

[23] M. Hasenbusch, Phys. Lett. B519 (2001) 177 [hep-lat/0107019].

[24] M. A. Clark and A. D. Kennedy, Nucl. Phys. Proc. Suppl., 129 (2004)
850 [hep-lat/0309084].

[25] J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380 (1992) 665.

[26] M. Lüscher, Comput. Phys. Commun. 79 (1994) 100 [arXiv:hep-
lat/9309020].

[27] http://luscher.web.cern.ch/luscher/ranlux/index.html

45


