A Parallelized Streaming Framework for Simulation and Visualization Grids

Prof. Dr. Stephan Olbrich, PD Dr. Siegfried Raasch, Dr. Sebastian Manten, Gabriel Gaus

Motivation
- Huge data sets
 - 3D grid: \(10^9\) data points
 - Non-stationary: \(10^4\) time steps
 - Data volume: \(100\) Terabyte
- Volume / Flow visualization
 - Online viewing
 - Computational steering

Solution
- Visualization middleware DSVR
 - Framework for “Virtual Science Labs”
 - Distributed, parallel, portable, modular approach
- High-throughput dataflow
 - Generation of 3D scenes
 - 3D streaming, remote viewing
- Browser-embedded controls

Technologies
- Parallel data extraction (MPI)
- Delivery over Gbit/s WAN (TCP/IP)
- Real-time streaming (RTSP)
- Replay of animations (OpenGL)
- Perceptual encoding, compression
- Support for C/C++/Fortran
- For major operating systems

Challenges
- Scalability and load balancing on massively-parallel computers
- Flexible resolution and multi resolution visualization approaches
- Synchronous composition of different visualization techniques
- Efficient encoding for streaming and storage
- Performance over 10 Gbit/s network

Applications
- E-Science
 - Computational Fluid Dynamics
 - Molecular Dynamics
- E-Learning
 - Exploration / Presentation
 - Collaborative Scenarios

Cooperations
- Center of Information und Media Technology, University of Düsseldorf (ZIM)
- Institute of Meteorology and Climatology, Leibniz University of Hannover (IMUK)
- German High-Performance Computer Center North (HLRN), Project nik00015
- German Research Foundation (DFG), Project EVITA (OL 241/1-1)
- Bull GmbH

Examples from the Large-Eddy Simulation group at IMUK:
- formation of dust devils (top), oceanic convection (middle), flow around city quarter of Shinjuku, Tokyo (bottom). See also: http://www.muk.uni-hannover.de/~raasch/PALM_group/PALM_group.html

Contact: Prof. Dr. Stephan Olbrich
Forschungszentrum L3S
Deutscher Pavillon, Expo Plaza 1
30539 Hannover, Germany
Email: olbrich@L3S.de
http://www.L3S.de/evita